We show that the left regular representation \pi_l of a discrete quantum
group (A,\Delta) has the absorbing property and forms a monoid
(\pi_l,\tilde{m},\tilde{\eta}) in the representation category Rep(A,\Delta).
Next we show that an absorbing monoid in an abstract tensor *-category C gives
rise to an embedding functor E:C->Vect_C, and we identify conditions on the
monoid, satisfied by (\pi_l,\tilde{m},\tilde{\eta}), implying that E is
*-preserving. As is well-known, from an embedding functor E: C->\mathrm{Hilb}
the generalized Tannaka theorem produces a discrete quantum group (A,\Delta)
such that C is equivalent to Rep_f(A,\Delta). Thus, for a C^*-tensor category C
with conjugates and irreducible unit the following are equivalent: (1) C is
equivalent to the representation category of a discrete quantum group
(A,\Delta), (2) C admits an absorbing monoid, (3) there exists a *-preserving
embedding functor E: C->\mathrm{Hilb}.Comment: Final version, to appear in Int. Journ. Math. (Added some references
and Subsection 1.2.) Latex2e, 21 page