15 research outputs found

    Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components

    Get PDF
    This paper concerns automotive parts located underneath the engine and in particular the engine oil pan. Classically made of stamped steel or cast aluminum, new developments have allowed the manufacture oil pans with polyamide 66 reinforced by 35% weight of short glass fiber. However, polyamides have some limitations and the most significant is their response to localized impact loading. The nature of the impact considered here is of a typical stone collected from the road and projected into the oil pan. Low velocity impact investigations were carried out using a gas gun and drop weight tower. The study shows that the design of the oil pan has a significant contribution in the shock absorption. In addition to the material properties, the geometry and the ribbing both cleverly combined, increase the impact resistance of the component significantly. Areas of oil pan design improvement have been identified and conclusions drawn

    Implementation of reflex loops in a biomechanical finite element model

    No full text
    In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models

    An application of FEA and machine learning for the prediction and optimisation of casing buckling and deformation responses in shale gas wells in an in-situ operation.

    No full text
    This paper proposes a novel way to study the casing structural integrity using two approaches of finite element analysis (FEA) and machine learning. The approach in this study is unique, as it captures the pertinent parameters influencing the casing buckling and the evaluation of the magnitude of each. In this work, the effect of combined loading using multiple parameters to establish the relationship and effect of each on stress, displacement and ultimately casing safety factor is revealed. The optimised result show remarkable improvement in reducing the total deformation, the von Mises and increasing the safety factor of the casing under combined loading condition. The optimised casing shows 89% reduction in total deformation and 87% reduction in von Mises in comparison to unoptimised simulation result. In addition, the safety factor of 3.3 is obtained against the initial predicted stress of 932.46 MPa with a corresponding safety factor of 0.8129. Real time parametric prediction and optimisation using Lunar and Quasar (ODYSSEE software package) enabled the examination of the casing structural responses based on the pertinent parameters. In effect, a very good agreement was found between 'KNN' and Lunar predictions on parameters influencing casing buckling phenomena and the corresponding Mises stress. Lunar optimisation provided the ideal parameter values for the attainment of pre-define von Mises stress as a function of other factors. This quick approach shows both accuracy and validation of the two independent procedures arriving at the same conclusion. We found that concurrent investigation of the casing buckling attributing factors and optimisation using FEA and ODYSSEE package is sufficient to maintain casing structural integrity during shale gas extraction process
    corecore