25 research outputs found

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions

    Get PDF
    Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ∼24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies

    Application of &delta;<sup>13</sup>C and &delta;<sup>15</sup>N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    No full text
    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of &delta;13C and &delta;15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the &delta;13C and &delta;15N isotopic signatures from two organic matter (OM) fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM occluded in micro-structures found in the chemical extraction residue (OM(ER)). Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY)-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY) through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY) and the ratio of soil organic carbon content to soil surface area (SOC/SSA). This indicates that the OM(PY) fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition of the OM(ER) fraction, we conclude that the OM in this fraction from both land use types have undergone a different pathway to stabilization that does not involve microbial processing, which may include OM which is highly protected within soil micro-structures

    Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition

    No full text
    Dissolved organic carbon (DOC) concentrations – mainly of terrestrial origin – are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low- and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover

    On the contributions of photorespiration and compartmentation to the contrasting intramolecular<sup>2</sup>H profiles of C<inf>3</inf>and C<inf>4</inf>plant sugars

    No full text
    © 2017 Elsevier Ltd Compartmentation of C 4 photosynthetic biochemistry into bundle sheath (BS) and mesophyll (M) cells, and photorespiration in C 3 plants is predicted to have hydrogen isotopic consequences for metabolites at both molecular and site-specific levels. Molecular-level evidence was recently reported (Zhou et al., 2016), but evidence at the site-specific level is still lacking. We propose that such evidence exists in the contrasting 2 H distribution profiles of glucose samples from naturally grown C 3 , C 4 and CAM plants: photorespiration contributes to the relative 2 H enrichment in H 5 and relative 2 H depletion in H 1 & H 6 (the average of the two pro-chiral Hs and in particular H 6, pro-R ) in C 3 glucose, while 2 H-enriched C 3 mesophyll cellular (chloroplastic) water most likely contributes to the enrichment at H 4 ; export of (transferable hydrogen atoms of) NADPH from C 4 mesophyll cells to bundle sheath cells (via the malate shuttle) and incorporation of 2 H-relatively unenriched BS cellular water contribute to the relative depletion of H 4 & H 5 respectively; shuttling of triose-phosphates (PGA: phosphoglycerate dand DHAP: dihydroacetone phosphate) between C 4 bundle sheath and mesophyll cells contributes to the relative enrichment in H 1 & H 6 (in particular H 6, pro-R ) in C 4 glucose

    Medial subvastus versus

    No full text

    Allocate carbon for a reason: Priorities are reflected in the 13C/12C ratios of plant lipids synthesized via three independent biosynthetic pathways

    No full text
    It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition (13C/12C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ13Cbk−lp (defined as δ13Cbulkleaftissue − δ13Clipid) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-d-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ13Cbk−lp between C3 and C4 plants Δδ13Cbk-lp,C4-C3Δδ13Cbk-lp,C4-C3 are also pathway-dependent: View the MathML sourceΔδ13Cbk-lp,C4-C3ACT > View the MathML sourceΔδ13Cbk-lp,C4-C3DXP > View the MathML sourceΔδ13Cbk-lp,C4-C3MVA.These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ13Cbk-lp,C3-C4Δδ13Cbk-lp,C3-C4 can be successfully explained by C4 − C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained by the fact that sterols act as regulatory hormones and membrane fluidity modulators in rather low concentrations
    corecore