5,160 research outputs found

    Analysis of stratospheric ozone, temperature, and minor constituent data

    Get PDF
    The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature, potential vorticity space as developed by Schoeberl and coworkers

    Contribution of a Real Depth Distance Stereoacuity Test to Clinical Management

    Get PDF
    Measurement of Stereopsis forms an important part of the clinical assessment of patients with disorders of ocular motility. The introduction of a real depth distance stereoacuity test (FD2) was evaluated in clinical practice and to what extent the introduction affected clinical management. Seventy-three patients under evaluation before and following the introduction of the test were included. Combined thresholds were measured at near using the Frisby and TNO test and at distance using the FD2. Fifty healthy controls were included. Forty-five patients demonstrated Stereopsis using the FD2 and 23 of these had a change in their management based in part on their responses using the FD2. Patients with evidence of Stereopsis using the FD2 were significantly more likely to have change in their management than expected from the whole sample (P = .02). The introduction of a real depth distance stereoacuity test into clinical practice contributed to a change in management when used in conjunction with other tests. The usefulness of the FD2 is limited by its range at 6 m. Use at closer distances necessitates the calculation of binocular threshold from the combined and monocular threshold
    • …
    corecore