421 research outputs found

    Building Medical Homes: Lessons From Eight States With Emerging Programs

    Get PDF
    Profiles states' progress in developing and implementing medical home programs, strategies to encourage primary care providers' adoption, and states' ability to convene stakeholders, help improve and evaluate performance, and address antitrust concerns

    Low rank compression in the numerical solution of the nonequilibrium Dyson equation

    Full text link
    We propose a method to improve the computational and memory efficiency of numerical solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on the empirical observation that the nonequilibrium Green's functions and self energies arising in many problems of physical interest, discretized as matrices, have low rank off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data structure. We describe an efficient algorithm to build this compressed representation on the fly during the course of time stepping, and use the representation to reduce the cost of computing history integrals, which is the main computational bottleneck. For systems with the hierarchical low rank property, our method reduces the computational complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic, and the memory complexity from quadratic to near linear. We demonstrate the full solver for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system parameters, and are able to increase feasible propagation times substantially. We present examples with 262144 time steps, which would require approximately five months of computing time and 2.2 TB of memory using the direct time stepping method, but can be completed in just over a day on a laptop with less than 4 GB of memory using our method. We also confirm the hierarchical low rank property for the driven Hubbard model in the weak coupling regime within the GW approximation, and in the strong coupling regime within dynamical mean-field theory.Comment: 14 page

    Mapping as assemblage for cultural research

    Get PDF
    This article introduces a novel approach to the practice of mapping for the Cultural Researcher. Mapping is typically defined as a spatial concept where definitions of territory are represented. Recent interest in mapping and the affordances of Global Positioning Software (GPS) technologies offer new directions for exploring connections and flows across economic, social and cultural spheres. These new developments offer exciting ways to re-engage with spatial definitions and representations; however they can also be seen to maintain existing power relations that are inherent within previous modes. This article explores how the practice of mapping offers some methodological and conceptual revisions to what may constitute Cultural Research; that is, to situate the Researcher in a space of subject/object relations, rendered as fields or domains of data. Central to this, is to understand that the Research perspective is embedded within its ‘object’; not sitting on the outside, looking down or around, but an integral agent within the data mapping process and whose role might be to record, emphasise, direct and facilitate selected connections and flows between networks

    Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem

    Get PDF
    Ponderosa pinebunchgrass ecosystems of the western United States were altered following Euro-American settlement as grazing and fire suppression facilitated pine invasion of grassy openings. Pine invasion changed stand structure and fire regimes, motivating restoration through forest thinning and prescribed burning. To determine effects of restoration on soil nitrogen (N) transformations, we replicated (0.25-ha plots) the following experimental restoration treatments within a ponderosa pinebunchgrass community near Flagstaff, Arizona: (1) partial restorationthinning to presettlement conditions, (2) complete restorationremoval of trees and forest floor to presettlement conditions, native grass litter addition, and a prescribed burn, and (3) control. Within treatments, we stratified sampling to assess effects of canopy cover on N transformations. Forest floor net N mineralization and nitrification were similar among treatments on an areal basis, but higher in restoration treatments on a mass basis. In the mineral soil (015 cm), restoration treatments had 23 times greater annual net N mineralization and 35 times greater annual net nitrification than the control. Gross N transformation measurements indicate that elevated net N mineralization may be due to increased gross N mineralization, while elevated net nitrification may be due to decreased microbial immobilization of nitrate. Net N transformation rates beneath relict grassy openings were twice those beneath postsettlement pines. These short-term (1 yr) results suggest that ecological restoration increases N transformation rates and that prescribed burning may not be necessary to restore N cycling processes

    Fast prediction and evaluation of gravitational waveforms using surrogate models

    Get PDF
    [Abridged] We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and in more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced-order model that can be used as a surrogate for the true/fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order m L + m c_f online operations where c_f denotes the fitting function operation count and, typically, m << L. We generate accurate surrogate models for Effective One Body (EOB) waveforms of non-spinning binary black hole coalescences with durations as long as 10^5 M, mass ratios from 1 to 10, and for multiple harmonic modes. We find that these surrogates are three orders of magnitude faster to evaluate as compared to the cost of generating EOB waveforms in standard ways. Surrogate model building for other waveform models follow the same steps and have the same low online scaling cost. For expensive numerical simulations of binary black hole coalescences we thus anticipate large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy.Comment: 20 pages, 17 figures, uses revtex 4.1. Version 2 includes new numerical experiments for longer waveform durations, larger regions of parameter space and multi-mode model

    A fast time domain solver for the equilibrium Dyson equation

    Full text link
    We consider the numerical solution of the real time equilibrium Dyson equation, which is used in calculations of the dynamical properties of quantum many-body systems. We show that this equation can be written as a system of coupled, nonlinear, convolutional Volterra integro-differential equations, for which the kernel depends self-consistently on the solution. As is typical in the numerical solution of Volterra-type equations, the computational bottleneck is the quadratic-scaling cost of history integration. However, the structure of the nonlinear Volterra integral operator precludes the use of standard fast algorithms. We propose a quasilinear-scaling FFT-based algorithm which respects the structure of the nonlinear integral operator. The resulting method can reach large propagation times, and is thus well-suited to explore quantum many-body phenomena at low energy scales. We demonstrate the solver with two standard model systems: the Bethe graph, and the Sachdev-Ye-Kitaev model
    • …
    corecore