research

Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem

Abstract

Ponderosa pinebunchgrass ecosystems of the western United States were altered following Euro-American settlement as grazing and fire suppression facilitated pine invasion of grassy openings. Pine invasion changed stand structure and fire regimes, motivating restoration through forest thinning and prescribed burning. To determine effects of restoration on soil nitrogen (N) transformations, we replicated (0.25-ha plots) the following experimental restoration treatments within a ponderosa pinebunchgrass community near Flagstaff, Arizona: (1) partial restorationthinning to presettlement conditions, (2) complete restorationremoval of trees and forest floor to presettlement conditions, native grass litter addition, and a prescribed burn, and (3) control. Within treatments, we stratified sampling to assess effects of canopy cover on N transformations. Forest floor net N mineralization and nitrification were similar among treatments on an areal basis, but higher in restoration treatments on a mass basis. In the mineral soil (015 cm), restoration treatments had 23 times greater annual net N mineralization and 35 times greater annual net nitrification than the control. Gross N transformation measurements indicate that elevated net N mineralization may be due to increased gross N mineralization, while elevated net nitrification may be due to decreased microbial immobilization of nitrate. Net N transformation rates beneath relict grassy openings were twice those beneath postsettlement pines. These short-term (1 yr) results suggest that ecological restoration increases N transformation rates and that prescribed burning may not be necessary to restore N cycling processes

    Similar works