[Abridged] We propose a solution to the problem of quickly and accurately
predicting gravitational waveforms within any given physical model. The method
is relevant for both real-time applications and in more traditional scenarios
where the generation of waveforms using standard methods can be prohibitively
expensive. Our approach is based on three offline steps resulting in an
accurate reduced-order model that can be used as a surrogate for the
true/fiducial waveform family. First, a set of m parameter values is determined
using a greedy algorithm from which a reduced basis representation is
constructed. Second, these m parameters induce the selection of m time values
for interpolating a waveform time series using an empirical interpolant. Third,
a fit in the parameter dimension is performed for the waveform's value at each
of these m times. The cost of predicting L waveform time samples for a generic
parameter choice is of order m L + m c_f online operations where c_f denotes
the fitting function operation count and, typically, m << L. We generate
accurate surrogate models for Effective One Body (EOB) waveforms of
non-spinning binary black hole coalescences with durations as long as 10^5 M,
mass ratios from 1 to 10, and for multiple harmonic modes. We find that these
surrogates are three orders of magnitude faster to evaluate as compared to the
cost of generating EOB waveforms in standard ways. Surrogate model building for
other waveform models follow the same steps and have the same low online
scaling cost. For expensive numerical simulations of binary black hole
coalescences we thus anticipate large speedups in generating new waveforms with
a surrogate. As waveform generation is one of the dominant costs in parameter
estimation algorithms and parameter space exploration, surrogate models offer a
new and practical way to dramatically accelerate such studies without impacting
accuracy.Comment: 20 pages, 17 figures, uses revtex 4.1. Version 2 includes new
numerical experiments for longer waveform durations, larger regions of
parameter space and multi-mode model