8,588 research outputs found

    Stabilization of Extra Dimensions at Tree Level

    Get PDF
    By considering the effects of string winding and momentum modes on a time dependent background, we find a method by which six compact dimensions become stabilized naturally at the self-dual radius while three dimensions grow large.Comment: 15 pages, 2 figures, minor typos correcte

    Thermal QCD Sum Rules Study of Vector Charmonium and Bottomonium States

    Get PDF
    We calculate the masses and leptonic decay constants of the heavy vector quarkonia, J/ψJ/\psi and Υ\Upsilon mesons at finite temperature. In particular, considering the thermal spectral density as well as additional operators coming up at finite temperature, the thermal QCD sum rules are acquired. Our numerical calculations demonstrate that the masses and decay constants are insensitive to the variation of temperature up to T100 MeVT\cong 100 ~MeV, however after this point, they start to fall altering the temperature. At deconfinement temperature, the decay constants attain roughly to 45% of their vacuum values, while the masses are diminished about 12%, and 2.5% for J/ψJ/\psi and Υ\Upsilon states, respectively. The obtained results at zero temperature are in good consistency with the existing experimental data as well as predictions of the other nonperturbative models. Considerable decreasing in the values of the decay constants can be considered as a sign of the quark gluon plasma phase transition.Comment: 14 Pages, 8 Figures and 2 Table

    Determination of Liquefaction Potential Using Dielectric Concept

    Get PDF
    In this paper existing insitu test methods to determine possible liquefaction potential of a site are discussed briefly with their advantages and limitations. Then, resistivity method is presented and showed how both resistivity and dielectric constant can be coped to determine insitu properties of soils such as cementation factor and porosity without disturbing the soil structure by means of Time Domain Reflectometry (TDR). A procedure is also presented to obtain both resistivity and dielectric constant of granular soils in the field. It is concluded that the proposed method and procedure is superior to the existing methods

    Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations

    Get PDF
    Intrinsic threshold voltage fluctuations introduced by local oxide thickness variations (OTVs) in deep submicrometer (decanano) MOSFETs are studied using three-dimensional (3-D) numerical simulations on a statistical scale. Quantum mechanical effects are included in the simulations employing the density gradient (DG) formalism. The random Si/SiO2 and gate/SiO2 interfaces are generated from a power spectrum corresponding to the autocorrelation function of the interface roughness. The impact on the intrinsic threshold voltage fluctuations of both the parameters used to reconstruct the random interface and the MOSFET design parameters are studied using carefully designed simulation experiments. The simulations show that intrinsic threshold voltage fluctuations induced by local OTV become significant when the dimensions of the devices become comparable to the correlation length of the interface. In MOSFETs with characteristic dimensions below 30 nm and conventional architecture, they are comparable to the threshold voltage fluctuations introduced by random discrete dopant

    Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current

    Full text link
    The hydrodynamic equation for the spatial and temporal evolution of the electron temperature T_e in the breakdown of the quantum Hall effect at even-integer filling factors in a uniform current density j is derived from the Boltzmann-type equation, which takes into account electron-electron and electron-phonon scatterings. The derived equation has a drift term, which is proportional to j and to the first spatial derivative of T_e. Applied to the spatial evolution of T_e in a sample with an abrupt change of the width along the current direction, the equation gives a distinct dependence on the current direction as well as a critical relaxation, in agreement with the recent experiments.Comment: 4 pages, 1 Postscript figure, corrected equations, to be published in J. Phys. Soc. Jpn. 70 (2001) No.

    Volume Stabilization and Acceleration in Brane Gas Cosmology

    Full text link
    We investigate toy cosmological models in (1+m+p)-dimensions with gas of p-branes wrapping over p-compact dimensions. In addition to winding modes, we consider the effects of momentum modes corresponding to small vibrations of branes and find that the extra dimensions are dynamically stabilized while the others expand. Adding matter, the compact volume may grow slowly depending on the equation of state. We also obtain solutions with winding and momentum modes where the observed space undergoes accelerated expansion.Comment: 20 pages, 3 figures, v2: comments and references added, to appear in JCA

    Effect of Ce substitution on the magnetoresistivity and flux pinning energy of the Bi2Sr2Ca1-x CexCu2O8+δ superconductors

    Get PDF
    In this study, the effect of Ce doping on the properties of Bi 2Sr2Ca1-x Ce x Cu2O 8+δ ceramic superconductors, with x=0.0, 0.01, 0.05, 0.1, and 0.25, has been investigated. Samples' precursors were prepared using the conventional solid state method and subsequently textured using the Laser Floating Zone technique. The magnetoresistance measurements were studied under various applied magnetic fields. The activation energies, irreversibility fields (H irr ), upper critical fields (H c2) and coherence lengths at 0 K (ξ(0)) were calculated from the resistivity versus temperature (ρ-T) curves, under DC magnetic fields up to 5 T. The thermally activated flux flow model has been applied in order to calculate the flux pinning energies. The results indicated that H c2(0) varied from 416.19 to 115 T and the flux pinning energies varied from 1.46 to 0.042 eV at 0 T. © 2013 Springer Science+Business Media New York.This work is supported by the Research Fund of Çukurova University, Adana, Turkey, under grant contracts No: FEF2011YL27 and FEF2013BAP11. A. Sotelo and M.A. Madre wish to thank the Gobierno de Aragón (Research Group T12), for financial support. M.A. Madre also acknowledges the MINECO-FEDER (Project MAT2011-22719) for funding.Peer Reviewe

    Hydrodynamic Equations in Quantum Hall Systems at Large Currents

    Full text link
    Hydrodynamic equations (HDEQs) are derived which describe spatio-temporal evolutions of the electron temperature and the chemical potential of two-dimensional systems in strong magnetic fields in states with large diagonal resistivity appearing at the breakdown of the quantum Hall effect. The derivation is based on microscopic electronic processes consisting of drift motions in a slowly-fluctuating potential and scattering processes due to electron-electron and electron-phonon interactions. In contrast with the usual HDEQs, one of the derived HDEQs has a term with an energy flux perpendicular to the electric field due to the drift motions in the magnetic field. As an illustration, the current distribution is calculated using the derived HDEQs.Comment: 10 pages, 2 Postscript figures, to be published in J. Phys. Soc. Jpn. 71 (2002) No.

    The Cosmology of Massless String Modes

    Full text link
    We consider the spacetime dynamics of a gas of closed strings in the context of General Relativity in a background of arbitrary spatial dimensions. Our motivation is primarily late time String Gas Cosmology, where such a spacetime picture has to emerge after the dilaton has stabilized. We find that after accounting for the thermodynamics of a gas of strings, only string modes which are massless at the self-dual radius are relevant, and that they lead to a dynamics which is qualitatively different from that induced by the modes usually considered in the literature. In the context of an ansatz with three large spatial dimensions and an arbitrary number of small extra dimensions, we obtain isotropic stabilization of these extra dimensions at the self-dual radius. This stabilization occurs for fixed dilaton, and is induced by the special string states we focus on. The three large dimensions undergo a regular Friedmann-Robertson-Walker expansion. We also show that this framework for late-time cosmology is consistent with observational bounds.Comment: 15 pages, no figures, references added (again
    corecore