15,761 research outputs found

    Reproductive and developmental effects of phthalate diesters in females.

    Get PDF
    Phthalate diesters, widely used in flexible plastics and consumer products, have become prevalent contaminants in the environment. Human exposure is ubiquitous and higher phthalate metabolite concentrations documented in patients using medications with phthalate-containing slow release capsules raises concerns for potential health effects. Furthermore, animal studies suggest that phthalate exposure can modulate circulating hormone concentrations and thus may be able to adversely affect reproductive physiology and the development of estrogen sensitive target tissues. Therefore, we conducted a systematic review of the epidemiological and experimental animal literature examining the relationship between phthalate exposure and adverse female reproductive health outcomes. The epidemiological literature is sparse for most outcomes studied and plagued by small sample size, methodological weaknesses, and thus fails to support a conclusion of an adverse effect of phthalate exposure. Despite a paucity of experimental animal studies for several phthalates, we conclude that there is sufficient evidence to suggest that phthalates are reproductive toxicants. However, we note that the concentrations needed to induce adverse health effects are high compared to the concentrations measured in contemporary human biomonitoring studies. We propose that the current patchwork of studies, potential for additive effects and evidence of adverse effects of phthalate exposure in subsequent generations and at lower concentrations than in the parental generation support the need for further study

    The generic character table of a Sylow pp-subgroup of a finite Chevalley group of type D4D_4

    Get PDF
    Let UU be a Sylow pp-subgroup of the finite Chevalley group of type D4D_4 over the field of qq elements, where qq is a power of a prime pp. We describe a construction of the generic character table of UU

    Quantum state transfer in spin chains with q-deformed interaction terms

    Get PDF
    We study the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. Some years ago it was discovered that when the spin chain data (the nearest neighbour interaction strengths and the magnetic field strengths) are related to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials, so-called perfect state transfer takes place. The extension of these ideas to other types of discrete orthogonal polynomials did not lead to new models with perfect state transfer, but did allow more insight in the general computation of the correlation function. In the present paper, we extend the study to discrete orthogonal polynomials of q-hypergeometric type. A remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. The other cases studied here (affine q-Krawtchouk polynomials, quantum q-Krawtchouk polynomials, dual q-Krawtchouk polynomials, q-Hahn polynomials, dual q-Hahn polynomials and q-Racah polynomials) do not give rise to models with perfect state transfer. However, the computation of the correlation function itself is quite interesting, leading to advanced q-series manipulations

    Electron Wave Filters from Inverse Scattering Theory

    Full text link
    Semiconductor heterostructures with prescribed energy dependence of the transmittance can be designed by combining: {\em a)} Pad\'e approximant reconstruction of the S-matrix; {\em b)} inverse scattering theory for Schro\"dinger's equation; {\em c)} a unitary transformation which takes into account the variable mass effects. The resultant continuous concentration profile can be digitized into an easily realizable rectangular-wells structure. For illustration, we give the specifications of a 2 narrow band-pass 12 layer AlcGa1−cAsAl_cGa_{1-c}As filter with the high energy peak more than {\em twice narrower} than the other.Comment: 4 pages, Revtex with one eps figur

    A Note on Hartle-Hawking Vacua

    Get PDF
    The purpose of this note is to establish the basic properties--- regularity at the horizon, time independence, and thermality--- of the generalized Hartle-Hawking vacua defined in static spacetimes with bifurcate Killing horizon admitting a regular Euclidean section. These states, for free or interacting fields, are defined by a path integral on half the Euclidean section. The emphasis is on generality and the arguments are simple but formal.Comment: 5 pages, LaTe

    'Heaven starts at your parents' feet' : adolescent bowing to parents and associated spiritual attitudes

    Get PDF
    In a quantitative survey of religious attitudes and practices in a multi-religious sample of 369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was found widespread in 22% of adolescents spanning several religious affiliations and ethnicities – especially Buddhists, Hindus and those of Indian, African and ‘Other Asian’ ethnicity. Whether an adolescent bowed correlated significantly with spiritual attitudes such as wanting to abstain from alcohol, hearing religious stories, being inspired by religious festivals and liking the idea of seeing God in everything. Findings suggest bowing to parents can have religious significance on all three levels of Jackson’s Interpretive Approach and therefore cannot be regarded as a ‘cultural accretion’ of religion. Study of bowing to parents could form a unifying exercise in shared values for study of religion in the plural classroom and facilitate community cohesion in certain religious membership groups

    Quantum communication and state transfer in spin chains

    Get PDF
    We investigate the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. We consider first the simplest possible spin chain, where the spin chain data (the nearest neighbour interaction strengths and the magnetic field strengths) are constant throughout the chain. The time evolution of a single spin state is determined, and this time evolution is illustrated by means of an animation. Some years ago it was discovered that when the spin chain data are of a special form so-called perfect state transfer takes place. These special spin chain data can be linked to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials. We discuss here the case related to Krawtchouk polynomials, and illustrate the possibility of perfect state transfer by an animation showing the time evolution of the spin chain from an initial single spin state. Very recently, these ideas were extended to discrete orthogonal polynomials of q-hypergeometric type. Here, a remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. This case is discussed here, and again illustrated by means of an animation

    Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?

    Full text link
    A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in three cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that under these conditions the singularity of the potential does not cause any difficulties and the Coulomb interaction can be treated as any other non-singular potential. Moreover, by virtue of our three-dimensional calculation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS

    Improved detection of small atom numbers through image processing

    Get PDF
    We demonstrate improved detection of small trapped atomic ensembles through advanced post-processing and optimal analysis of absorption images. A fringe removal algorithm reduces imaging noise to the fundamental photon-shot-noise level and proves beneficial even in the absence of fringes. A maximum-likelihood estimator is then derived for optimal atom-number estimation and is applied to real experimental data to measure the population differences and intrinsic atom shot-noise between spatially separated ensembles each comprising between 10 and 2000 atoms. The combined techniques improve our signal-to-noise by a factor of 3, to a minimum resolvable population difference of 17 atoms, close to our ultimate detection limit.Comment: 4 pages, 3 figure
    • …
    corecore