We study the time evolution of a single spin excitation state in certain
linear spin chains, as a model for quantum communication. Some years ago it was
discovered that when the spin chain data (the nearest neighbour interaction
strengths and the magnetic field strengths) are related to the Jacobi matrix
entries of Krawtchouk polynomials or dual Hahn polynomials, so-called perfect
state transfer takes place. The extension of these ideas to other types of
discrete orthogonal polynomials did not lead to new models with perfect state
transfer, but did allow more insight in the general computation of the
correlation function. In the present paper, we extend the study to discrete
orthogonal polynomials of q-hypergeometric type. A remarkable result is a new
analytic model where perfect state transfer is achieved: this is when the spin
chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. The
other cases studied here (affine q-Krawtchouk polynomials, quantum q-Krawtchouk
polynomials, dual q-Krawtchouk polynomials, q-Hahn polynomials, dual q-Hahn
polynomials and q-Racah polynomials) do not give rise to models with perfect
state transfer. However, the computation of the correlation function itself is
quite interesting, leading to advanced q-series manipulations