724 research outputs found

    Sea Ice Prediction Has Easy and Difficult Years

    Get PDF
    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013)

    Isoform Diversity of Dystrobrevin, the Murine 87-kDa Postsynaptic Protein

    Get PDF
    Dystrophin-related and -associated proteins are important in the formation and maintenance of the mammalian neuromuscular junction. We have characterized mouse cDNA clones encoding isoforms of the dystrophin-homologous 87-kDa postsynaptic protein, dystrobrevin. In Torpedo, the 87-kDa protein is multiply phosphorylated and closely associated with proteins in the postsynaptic cytoskeleton, including the acetylcholine receptor. In contrast to Torpedo, where only a single transcript is seen, the mouse expresses several mRNAs encoding different isoforms. A 6.0-kilobase transcript in brain encodes a 78-kDa protein (dystrobrevin-1) that is very similar to the Torpedo sequence. A second transcript encodes a 59-kDa protein (dystrobrevin-2) that has a different C terminus, lacking the putative tyrosine kinase substrate domain. In skeletal and cardiac muscle, transcripts of 1.7 and 3.3/3.5 kilobases predominate and encode additional isoforms. Alternative splicing within the coding region and differential usage of untranslated regions produce additional variation. Multiple dystrobrevin-immunoreactive proteins copurify with syntrophin from mouse tissues. In skeletal muscle, dystrobrevin immunoreactivity is restricted to the neuromuscular junction and sarcolemma. The occurrence of many dystrobrevin isoforms is significant because alternative splicing and phosphorylation often have profound effects upon the biological activity of synaptic proteins

    The Grizzly, February 20, 1981

    Get PDF
    SAC Approves Spring Term 1981 Allocations • SPC to Propose Journalism Seminar • USGA Announces New Officers • Grizzly Planning Satire Issue • Professional Credentials Committee Explored • Departmental Focus: Biology Department • USGA Notes • Astronomy Club Planning Open House • Music News Defends JDB • Lorelei Outcast • Alumni Office Sponsors Homecoming II • Sorority Pledging With Frats • Graterford Visit Provides New Insights • Classics Club Planning Another Trip • Special Olympics Slated for March • Athletic Department Announces Play-off Plans • Sports Profile: Greg Gifford • Basketball Team Clinches MAC Southern Division • Textile Downs Lady Hoopsters • Grapplers: 10-5-1https://digitalcommons.ursinus.edu/grizzlynews/1053/thumbnail.jp

    DANSR: A tool for the detection of annotated and novel small RNAs

    Get PDF
    Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17-35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36-200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17-200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool

    Use of abstraction and discharge data to improve the performance of a national‐scale hydrological model

    Get PDF
    Across the UK, water abstracted from ground, surface, and tidal stores is regulated through a system of licenses to protect both the sources and the environment. Similar permits are required for discharging wastewater to rivers or onto the ground. These abstractions and discharges can have a significant impact on UK Rivers, but measurements are not readily available, which discourages their use in hydrological models of river flows. However, these very unique data sets provide a means to improve the performance of spatially distributed hydrological models, particularly during periods when abstraction regulations change and at ungauged river locations. To demonstrate this, point source abstraction and discharge measurements across England have been transformed into 1 × 1 km resolution gridded data and used with an enhanced formulation of the Grid-to-Grid (G2G) hydrological model where these processes are mathematically represented. A comparison of G2G-simulated and gauged river flows for 605 catchments across England between 1999 and 2014 indicates that model simulation of river flows is generally improved at gauged locations downstream of abstraction/discharge sites. The main improvement is in the simulation of low flows, for which the median performance is improved by 10.7%, however, the impact on simulation of high river flows is more modest (1.5% improvement). These results demonstrate the potential gains available to the international hydrological and land-surface modeling community from using records of actual water use (where available) in models, in place of more widely used national statistics

    Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management

    Get PDF
    Native oyster reefs once dominated many estuaries, ecologically and economically. Centuries of resource extraction exacerbated by coastal degradation have pushed oyster reefs to the brink of functional extinction worldwide. We examined the condition of oyster reefs across 144 bays and 44 ecoregions; our comparisons of past with present abundances indicate that more than 90% of them have been lost in bays (70%) and ecoregions (63%). In many bays, more than 99% of oyster reefs have been lost and are functionally extinct. Overall, we estimate that 85% of oyster reefs have been lost globally. Most of the world\u27s remaining wild capture of native oysters (\u3e 75%) comes from just five ecoregions in North America, yet the condition of reefs in these ecoregions is poor at best, except in the Gulf of Mexico. We identify many cost-effective solutions for conservation, restoration, and the management of fisheries and nonnative species that could reverse these oyster losses and restore reef ecosystem services
    corecore