41 research outputs found

    Stable and functional expression of the CIC-3 chloride channel in somatic cell lines

    Get PDF
    AbstractThe CIC family is the superfamily of voltage-gated Cl− channels. Although the CIC channels expressed in Xenopus oocytes have been characterized, their channel properties are still poorly understood. We recently cloned a unique member of the CIC family, CIC-3, that is expressed abundantly in neurons. Its channel activity was regulated by phorbol esters. Now, we have established a stably transfected somatic cell line expressing functional CIC-3 channels and examined the CIC-3 single-channel current by patch-clamp techniques. In inside-out patches from the stably transfected cells, a rise of bath Ca2+ concentration in the physiological range of intracellular Ca2+ concentrations inhibited the CIC-3 single-channel currents. This inhibition by Ca2+ was independent of phosphorylation and ATP. Thus, the CIC-3 channel is a Ca2+-sensitive CI− channel localized in neuronal cells, and its Ca2+ sensitivity implies a physiological role in neuronal functions

    Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA

    Full text link
    We present the results of a systematic study using ASCA of the ionization state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B, W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray emission, which contrasts to shell-like radio morphology, a set of haracteristics at odds with the standard model of SNR evolution (e.g., the Sedov model). We have therefore studied the evolution of the MMSNRs from the ionization conditions inferred from the X-ray spectra, independent of X-ray morphology. We find highly ionized plasmas approaching ionization equilibrium in all the mmsnrs. The degree of ionization is systematically higher than the plasma usually seen in shell-like SNRs. Radial temperature gradients are also observed in five remnants, with cooler plasma toward the limb. In IC 443 and W49B, we find a plasma structure consistent with shell-like SNRs, suggesting that at least some MMSNRs have experienced similar evolution to shell-like SNRs. In addition to the results above, we have discovered an ``overionized'' ionization state in W49B, in addition to that previously found in IC 443. Thermal conduction can cause the hot interior plasma to become overionized by reducing the temperature and density gradients, leading to an interior density increase and temperature decrease. Therefore, we suggest that the ``center-filled'' X-ray morphology develops as the result of thermal conduction, and should arise in all SNRs. This is consistent with the results that MMSNRs are near collisional ionization equilibrium since the conduction timescale is roughly similar to the ionization timescale. Hence, we conclude that MMSNRs are those that have evolved over104\sim10^4 yr. We call this phase as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The Astrophysical Journa

    ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma

    Get PDF
    We present the results of X-ray spatial and spectral studies of the ``mixed-morphology'' supernova remnant IC 443 using ASCA. IC 443 has a center-filled image in X-ray band, contrasting with the shell-like appearance in radio and optical bands. The overall X-ray emission is thermal, not from a synchrotron nebula. ASCA observed IC 443 three times, covering the whole remnant. From the image analysis, we found that the softness-ratio map reveals a shell-like structure. At the same time, its spectra require two (1.0 keV and 0.2 keV) plasma components; the emission of the 0.2 keV plasma is stronger in the region near the shell than the center. These results can be explained by a simple model that IC 443 has a hot (1.0 keV) interior surrounded by a cool (0.2 keV) outer shell. From the emission measures, we infer that the 0.2 keV plasma is denser than the 1.0 keV plasma, suggesting pressure equilibrium between the two. In addition, we found that the ionization temperature of sulfur, obtained from H-like Kα\alpha to He-like Kα\alpha intensity ratio, is 1.5 keV, significantly higher than the gas temperature of 1.0 keV suggested from the continuum spectrum. The same can be concluded for silicon. Neither an additional, hotter plasma component nor a multi-temperature plasma successfully accounts for this ratio, and we conclude that the 1.0 keV plasma is overionized. This is the first time that overionized gas has been detected in a SNR. For the gas to become overionized in the absence of a photoionizing flux, it must cool faster than the ions recombine. Thermal conduction from the 1.0 keV plasma to the 0.2 keV one could cause the 1.0 keV plasma to become overionized, which is plausible within an old (3×104\times10^4 yr) SNR.Comment: 11 pages, 15 figures, 2 tables, accepted for publication in The Astrophysical Journa

    Extraction of copper from complex carbonaceous sulfide ore by direct high-pressure leaching

    Get PDF
    The increase of impurities and complexity of copper ores are among the recent challenges in the mining industry. Complex carbonaceous sulfide ores are extremely difficult to treat due to their mineralogical complexity and impurities of organic carbon and carbonates. This study focuses on the development of a hydrometallurgical process for efficient copper extraction from complex carbonaceous sulfide ore which contains chalcopyrite, carbonates (dolomite and calcite), and carbonaceous gangue minerals. Characterization of the ore sample and leach residues was conducted using XRD and EPMA analysis, while ICP-OES was used for the determination of total dissolved metals in solution. High-pressure leaching of complex carbonaceous sulfide ore in oxygenated sulfuric acid solution was performed and the influence of leaching parameters such as sulfuric acid concentration, temperature, total pressure, and pulp density was studied. The extraction of copper increased with increasing temperature, sulfuric acid concentration, and total pressure. On the other hand, an increase in pulp density resulted in a decline in copper extraction due to an increased slurry viscosity and resistance in the diffusive mass transfer of reactants. Selective dissolution of copper from iron can be achieved by controlling free acidity in the pregnant leach solution (PLS). Under these leaching conditions: 100 g/L, 1 M H2SO4, 160 ◦C, 1.0 MPa total pressure, the highest copper and iron extractions achieved were 97.55% and 95.37%, respectively. Precipitation of copper from the PLS by NaSH sulfidization was investigated and more than 99.9% of copper was recovered at a Cu: NaSH molar ratio of 1:1.8

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
    corecore