25 research outputs found

    Molecular-Cloud-Scale Chemical Composition I: Mapping Spectral Line Survey toward W51 in the 3 mm Band

    Get PDF
    We have conducted a mapping spectral line survey toward the Galactic giant molecular cloud W51 in the 3 mm band with the Mopra 22 m telescope in order to study an averaged chemical composition of the gas extended over a molecular cloud scale in our Galaxy. We have observed the area of 25×3025' \times 30', which corresponds to 39 pc ×\times 47 pc. The frequency ranges of the observation are 85.1 - 101.1 GHz and 107.0 - 114.9 GHz. In the spectrum spatially averaged over the observed area, spectral lines of 12 molecular species and 4 additional isotopologues are identified. An intensity pattern of the spatially-averaged spectrum is found to be similar to that of the spiral arm in the external galaxy M51, indicating that these two sources have similar chemical compositions. The observed area has been classified into 5 sub-regions according to the integrated intensity of 13^{13}CO(J=10J=1-0) (I13COI_{\rm ^{13}CO}), and contributions of the fluxes of 11 molecular lines from each sub-region to the averaged spectrum have been evaluated. For most of molecular species, 50 % or more of the flux come from the sub-regions with I13COI_{\rm ^{13}CO} from 25 K km s1^{-1} to 100 K km s1^{-1}, which does not involve active star forming regions. Therefore, the molecular-cloud-scale spectrum observed in the 3 mm band hardly represents the chemical composition of star forming cores, but mainly represents the chemical composition of an extended quiescent molecular gas. The present result constitutes a sound base for interpreting the spectra of external galaxies at a resolution of a molecular cloud scale (10\sim10 pc) or larger.Comment: Accepted for publication in Ap

    Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys

    Get PDF
    Background New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. Results We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. Conclusions Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste

    A Case of Frontotemporal Lobar Degeneration with Progressive Dysarthria

    No full text
    We investigated the evolution of the neurological and neuropsychological characteristics in a right-handed woman who was 53-years-old at the onset and who showed personality changes and behavioral disorders accompanied by progressive dysarthria. She had hypernasality and a slow rate of speech with distorted consonants and vowels, which progressed as motor disturbances affecting her speech apparatus increased; finally, she became mute two years post onset. Her dysarthria due to bilateral voluntary facio-velo-linguo-pharyngeal paralysis accompanied with automatic-voluntary dissociation fit the description of anterior opercular syndrome. She showed personality changes and behavioral abnormalities from the initial stage of the disease, as is generally observed in frontotemporal degeneration (FTD), and her magnetic resonance image showed progressive atrophy in the frontotemporal lobes; thus, she was clinically diagnosed with FTLD. This patient’s symptoms suggest that FTLD, including bilateral anterior operculum degeneration, causes progressive pseudobulbar paretic dysarthria accompanied by clinical symptoms of FTD, which raises the possibility of a new clinical subtype in the FTLD spectrum

    Data from: Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys

    No full text
    Background: New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. Results: We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. Conclusions: Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste
    corecore