72 research outputs found

    LES Analysis of Ventilation Performance and Wind Gust Occurrence for Strategic Urban Transformation

    Get PDF
    In order to achieve desirable urban redevelopment in the near future, various transformation strategies were investigated using LES, focusing on their impact on ventilation performance and wind gust generation. This study evaluated the replacement of city blocks with high-rise buildings, replacement with mid-rise buildings lower than the surrounding area, and simple multi-building arrangements utilizing the prevailing wind direction

    LES on wind pressure acting on high-rise building under strong wind events of Typhoon

    Get PDF
    This study predicts wind pressure on high-rise buildings under typhoons by LES using CUBE and discuss the effects of turbulence fields obtained from broad region simulation and fine vortex structure around complicated facade on wind pressure. First, the computation of broad region including many high-rise building is carried out. The computation reveals that structures with streamtwise vorticity appears from the upper corner of high-rise building and remains even in 1km leeward region. Then, the computation resolving the complicated façade of two buildings is carried out and turbulent structure around the complicated façade is examined. The result shows that it is possible to show local wind pressure induced by fine structure of vortex by the computation with high spatial resolution resolving the shape of unevenness on building façade

    Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebellar corticogenesis begins with the assembly of Purkinje cells into the Purkinje plate (PP) by embryonic day 14.5 (E14.5) in mice. Although the dependence of PP formation on the secreted protein Reelin is well known and a prevailing model suggests that Purkinje cells migrate along the 'radial glial' fibers connecting the ventricular and pial surfaces, it is not clear how Purkinje cells behave in response to Reelin to initiate the PP. Furthermore, it is not known what nascent Purkinje cells look like <it>in vivo</it>. When and how Purkinje cells start axonogenesis must also be elucidated.</p> <p>Results</p> <p>We show that Purkinje cells generated on E10.5 in the posterior periventricular region of the lateral cerebellum migrate tangentially, after only transiently migrating radially, towards the anterior, exhibiting an elongated morphology consistent with axonogenesis at E12.5. After their somata reach the outer/dorsal region by E13.5, they change 'posture' by E14.5 through remodeling of non-axon (dendrite-like) processes and a switchback-like mode of somal movement towards a superficial Reelin-rich zone, while their axon-like fibers remain relatively deep, which demarcates the somata-packed portion as a plate. In <it>reeler </it>cerebella, the early born posterior lateral Purkinje cells are initially normal during migration with anteriorly extended axon-like fibers until E13.5, but then fail to form the PP due to lack of the posture-change step.</p> <p>Conclusions</p> <p>Previously unknown behaviors are revealed for a subset of Purkinje cells born early in the posteior lateral cerebellum: tangential migration; early axonogenesis; and Reelin-dependent reorientation initiating PP formation. This study provides a solid basis for further elucidation of Reelin's function and the mechanisms underlying the cerebellar corticogenesis, and will contribute to the understanding of how polarization of individual cells drives overall brain morphogenesis.</p

    WRF-LES Simulation of Wind Flow over Rough Urban Surface during Typhoon Lan (2017)

    Get PDF
    In this study, we investigated the influence of ground surface boundary conditions of the meteorological model on the accuracy in predicting the mean wind speed and wind speed fluctuation in the urban area. Two types of ground surface boundary conditions (Cases 1 and 2) were created. In Case 1, the roughness length for the urban area was set to 0.5 m uniformly, whereas in Case 2, the spatial distribution of roughness length for the urban area was set based on the urban geometry. We performed the wind flow simulation in the central part of Tokyo during Typhoon Lan (2017) by using WRF-LES with the created ground surface boundary conditions. By setting the roughness length based on the urban geometry, the accuracy in predicting the mean wind speed was improved significantly. However, in both cases, WRF-LES&nbsp;underestimated the turbulence intensity, especially near the ground surface

    包括的凝固/線溶動態に基づく敗血症性DIC(播種性血管内凝固)の病態解明

    Get PDF
    Background: The functional dynamics of coagulation and fibrinolysis in patients with disseminated intravascular coagulation (DIC) vary due to the pathology and severity of various underlying diseases. Conventional measurements of hemostasis such as thrombin-antithrombin complex, plasmin-α2-plasmin-inhibitor complex, and fibrinogen-fibrin degradation products may not always reflect critical pathophysiologic mechanisms in DIC. This article aims to clarify the pathology of sepsis-associated DIC using assessment of comprehensive coagulation and fibrinolysis. Methods: Plasma samples were obtained from 57 patients with sepsis-associated DIC at the time of initial diagnosis. Hemostasis parameters were quantified by clot-fibrinolysis waveform analysis (CFWA) and thrombin/plasmin generation assays (T/P-GA). The results were expressed as ratios relative to normal plasma. Results: CFWA demonstrated that the maximum coagulation velocity (|min1|) ratio modestly increased to median 1.40 (min - max: 0.10 - 2.60) but the maximum fibrinolytic velocity (|FL-min1|) ratio decreased to 0.61 (0 - 1.19). T/P-GA indicated that the peak thrombin (Th-Peak) ratio moderately decreased to 0.71 (0.22 - 1.20), whereas the peak plasmin (Plm-Peak) ratio substantially decreased to 0.35 (0.02 - 1.43). Statistical comparisons identified a correlation between |min1| and Th-Peak ratios (ρ = 0.55, p < 0.001), together with a strong correlation between |FL-min1| and Plm-Peak ratios (ρ = 0.71, p < 0.001), suggesting that CFWA reflected the balance between thrombin and plasmin generation. With |min1| and |FL-min1| ratios, DIC was classified as follows: coagulation-predominant, coagulation/fibrinolysis-balanced, fibrinolysis-predominant, and consumption-impaired coagulation. The majority of patients in our cohort (80.7%) were coagulation-predominant. Conclusion: A pathological clarification of sepsis-associated DIC based on the assessment of coagulation and fibrinolysis dynamics may be useful for the hemostatic monitoring and management of optimal treatment in these individuals.博士(医学)・甲第786号・令和3年3月15日© 2020. Thieme. All rights reserved.This is a non-final version of an article published in final form in "http://dx.doi.org/10.1055/s-0040-1713890

    Effect of CYP2C19 Polymorphism on Treatment Success in Lansoprazole-Based 7-Day Treatment Regimen for Cure of H. pylori Infection in Japan

    Get PDF
    Recently, Helicobacter pylori (H. pylori)-positive peptic ulcer patients were treated by a 1-week triple therapy [lansoprazole (LPZ) 30 mg, amoxicillin 750 mg and clarithromycin 200 or 400 mg, each twice daily] without the checking CYP2C19 genotype in Japan. This regimen was done to obtain sufficient cure rates for H. pylori infection using a high dose of LPZ (60 mg/day) without the great cost of having to determine the genotype. However, the failure rate for eradicating H. pylori was reported to be 12.5%. The reasons for this were studied in 33 Japanese patients with H. pylori-positive gastric or duodenal ulcer. Blood samples of the patients were collected to determine the genotype of CYP2C19 and plasma concentrations of LPZ and its metabolites at 3 h postdose on the morning of the 7th day of treatment. H. pylori infection was cured in 25 of the 33 patients (75.8%). The cure rate was highest in the group of poor metabolizers (PM), intermediate in the group of extensive metabolizers of the heterozygous type (htEM) and lowest in the group of extensive metabolizers of the homozygous type (hmEM). The relative ratio of mean plasma concentration for LPZ among the 3 groups was 1.00:1.43:2.93 (hmEM:htEM:PM groups). Our data suggest that success of the eradication is dependent on the CYP2C19-related genotypic status or the plasma concentrations of LPZ in a steady state condition after a multiple dosing regimen; that is to say, checking CYP2C19 is necessary even on occasions when treatment is done by H. pylori eradication methods as performed in Japan

    CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Has Anti-Aging Effects That Protect Articular Cartilage from Age-Related Degenerative Changes

    Get PDF
    To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid
    corecore