1,191 research outputs found

    Global search algorithm for optimal control

    Get PDF
    Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer

    NEUR 280.01: Fundamentals of Neuroscience

    Get PDF

    Interactions of alkali cations with glutamate transporters

    Get PDF
    The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions

    Identifying Neurotransmitter Spill-over in Hippocampal Field Recordings

    Get PDF
    A model of synaptic and extra-synaptic excitatory signaling in the hippocampus is presented. The model is used to analytically evaluate the potential contributions of homosynaptic and heterosynaptic glutamate spill-over to receptor signaling during an electrophysiological experiment in which glutamate transporters are pharmacologically blocked. Inhibition of glutamate uptake selectively prolongs the decay kinetics of the second field excitatory postsynaptic potential evoked by paired pulse stimulation of Schaffer collateral axons in area CA1. The model includes AMPA and NMDA glutamate receptors, and the removal of glutamate by transporters and diffusion. We establish analytically that the prolongation cannot be caused by local effects, i.e., the transporters acting within or near the synapse. In contrast, a time profile of glutamate consistent with spill-over from adjacent synapses can explain the effect. The different reaction kinetics of AMPA and NMDA receptors have a significant role in reproducing the experimental results, as explained by analysis of the ODEs governing the reactions

    Interactions of alkali cations with glutamate transporters

    Get PDF
    The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions

    Community-Based Risk Assessment for Humanitarian Mine Action : A Case Study of Cambodia

    Get PDF

    Glutamate transporter control of ambient glutamate levels

    Get PDF
    Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for understanding its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate based on microdialysis measurements are generally in the range of ∼2–10 μM, approximately 100-fold higher than estimates based on electrophysiological measurements of tonic NMDA receptor activity (∼25–90 nM). The latter estimates are closer to the low nanomolar estimated thermodynamic limit of glutamate transporters. The reasons for this discrepancy are not known, but it has been suggested that microdialysis measurements could overestimate ambient extracellular glutamate because of reduced glutamate transporter activity in a region of metabolically impaired neuropil adjacent to the dialysis probe. We explored this issue by measuring diffusion gradients created by varying membrane densities of glutamate transporters expressed in Xenopus oocytes. With free diffusion from a pseudo-infinite 10 μM glutamate source, the surface concentration of glutamate depended on transporter density and was reduced over 2 orders of magnitude by transporters expressed at membrane densities similar to those previously reported in hippocampus. We created a diffusion model to simulate the effect of transport impairment on microdialysis measurements with boundary conditions corresponding to a 100 μm radius probe. A gradient of metabolic disruption in a thin (∼100 μm) region of neuropil adjacent to the probe increased predicted [Glu] in the dialysate over 100-fold. The results provide support for electrophysiological estimates of submicromolar ambient extracellular [Glu] in brain and provide a possible explanation for the higher values reported using microdialysis approaches

    Specificity and Actions of an Arylaspartate Inhibitor of Glutamate Transport at the Schaffer Collateral-CA1 Pyramidal Cell Synapse

    Get PDF
    In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA). At concentrations up to 100 µM, L-TBA did not act as an AMPA receptor (AMPAR) or NMDA receptor (NMDAR) agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg2+ concentrations, but in Mg2+-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg2+ was the same in hippocampal slices from EAAT3 +/+ and EAAT3 −/− mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg2+ revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg2+ block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency signaling

    Prediction and benefits of minimal disease activity in patients with psoriatic arthritis and active skin disease in the ADEPT trial

    Get PDF
    Objectives: To determine the proportion of patients with psoriatic arthritis in the Adalimumab Effectiveness in Psoriatic Arthritis trial achieving minimal disease activity (MDA) and its individual components at 1 or more visits over 144 weeks, identify baseline predictors of MDA achievement, and evaluate the association of MDA status with independent quality of life (QoL)-related patient-reported outcomes (PROs). Methods: Univariate and multivariate analyses were used to identify the baseline characteristics that predicted achievement of MDA at individual time points (weeks 12 through 144) or sustained MDA (achievement of MDA at 2 consecutive time points 12 weeks apart). The association of independent QoL-related PROs with MDA achievement was evaluated at weeks 24 and 144. Results: In univariate analyses, higher baseline patient assessment of pain, tender joint count (TJC), enthesitis and Health Assessment Questionnaire-Disability Index (HAQ-DI) score were significantly associated with lower likelihood of achieving MDA at later time points. Multivariate analyses confirmed higher baseline HAQ-DI as a significant predictor for failure to achieve MDA at later time points. Achievement of sustained MDA was associated with lower baseline TJC and HAQ-DI score. Achievement of different MDA components appeared to be treatment dependent. MDA achievers had significantly better QoL-related PROs and greater improvements in PROs from baseline to week 24 compared with non-achievers. Conclusions: Higher HAQ-DI score was the most consistent baseline factor that decreased the likelihood of achieving MDA and sustained MDA at later time points. Achieving MDA was associated with better independent QoL-related PROs
    corecore