14 research outputs found

    Tumour budding and poorly differentiated clusters in colon cancer – different manifestations of partial epithelial-mesenchymal transition

    Get PDF
    Morphological features including infiltrative growth, tumour budding (TB) and poorly differentiated clusters (PDCs), have a firmly established negative predictive value in colorectal cancer (CRC). Despite extensive research, the mechanisms underlying different tumour growth patterns remain poorly understood. The aim of this study was to investigate the involvement of epithelial-mesenchymal transition (EMT) in TB and PDCs in CRC. Using laser-capture microdissection, we obtained distinct parts of the primary CRC including TB, PDCs, expansive tumour front and the central part of the tumour and analysed the expression of EMT-related markers, i.e., miR-200 family, ZEB1/2, RND3 and CDH1. In TB, the miR-200 family and CDH1 were significantly downregulated, while ZEB2 was significantly upregulated. In PDCs, miR- 141, miR-200c and CDH1 were significantly downregulated. No significant differences were observed in the expression of any EMT-related markers between the expansive tumour front and the central part of the tumour. Our results suggest that both TB and PDCs are related to partial EMT. Discrete differences in morphology and EMT-related markers expression between TB and PDCs indicate that they represent different manifestations of partial EMT. TB seems to be closer to complete EMT than PDCs

    Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma.</p> <p>Methods</p> <p>HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration.</p> <p>Results</p> <p>17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration.</p> <p>Conclusions</p> <p>Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in <it>in vivo </it>induction of HIF. <it>In vitro </it>data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.</p

    PRAME gene expression profile in medulloblastoma

    Get PDF
    Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas

    Expression of cancer testis antigens in human BRCA-associated breast cancers : potential targets for immunoprevention?

    No full text
    INTRODUCTION: Novel breast cancer risk-reducing strategies for individuals with germline mutations of the BRCA1 and/or BRCA2 genes are urgently needed. Identification of antigenic targets that are expressed in early cancers, but absent in normal breast epithelium of these high-risk individuals, could provide the basis for the development of effective immunoprophylactic strategies. Cancer testis (CT) antigens are potential candidates because their expression is restricted to tumors, and accumulating data suggest that they play important roles in cellular proliferation, stem cell function, and carcinogenesis. The objective of this study was to examine the expression of CT antigens and their frequency in BRCA-associated breast cancers. METHODS: Archived breast cancer tissues (n = 26) as well as morphologically normal breast tissues (n = 7) from women carrying deleterious BRCA 1 and/or 2 mutations were obtained for antigen expression analysis by immunohistochemistry. Expression of the following CT antigens was examined: MAGE-A1, MAGE-A3, MAGE-A4, MAGE-C1.CT7, NY-ESO-1, MAGE-C2/CT10, and GAGE. RESULTS: CT antigens were expressed in 16/26 (61.5%, 95% CI 43-80%) of BRCA-associated cancers, including in situ tumors. Thirteen of twenty-six (50%) breast cancers expressed two or more CT antigens; three cancers expressed all seven CT antigens. MAGE-A was expressed in 13/26 (50%) of cancers, NY-ESO-1 was expressed in 10/26 (38%) of tumors. In contrast, none of the CT antigens were expressed in adjacent or contralateral normal breast epithelium (P = 0.003). CONCLUSIONS: We report a high CT antigen expression rate in BRCA-associated breast cancer as well as the lack of expression of these antigens in benign breast tissue of carriers, identifying CT antigens as potential vaccine targets for breast cancer prevention in these high-risk individuals

    Accuracy in Diagnosis of Celiac Disease Without Biopsies in Clinical Practice

    No full text
    Background &amp; Aims The guidelines of the European Society of Pediatric Gastroenterology, Hepatology, and Nutrition allow for diagnosis of celiac disease without biopsies in children with symptoms and levels of immunoglobulin A against tissue-transglutaminase (TGA-IgA) 10-fold or more the upper limit of normal (ULN), confirmed by detection of endomysium antibodies (EMA) and positivity for HLA-DQ2/DQ8. We performed a large, international prospective study to validate this approach. Methods We collected data from consecutive pediatric patients (18 years or younger) on a gluten-containing diet who tested positive for TGA-IgA from November 2011 through May 2014, seen at 33 pediatric gastroenterology units in 21 countries. Local centers recorded symptoms; measurements of total IgA, TGA, and EMA; and histopathology findings from duodenal biopsies. Children were considered to have malabsorption if they had chronic diarrhea, weight loss (or insufficient gain), growth failure, or anemia. We directly compared central findings from 16 antibody tests (8 for TGA-IgA, 1 for TGA-IgG, 6 for IgG against deamidated gliadin peptides, and 1 for EMA, from 5 different manufacturers), 2 HLA-DQ2/DQ8 tests from 2 manufacturers, and histopathology findings from the reference pathologist. Final diagnoses were based on local and central results. If all local and central results were concordant for celiac disease, cases were classified as proven celiac disease. Patients with only a low level of TGA-IgA (threefold or less the ULN) but no other results indicating celiac disease were classified as no celiac disease. Central histo-morphometry analyses were performed on all other biopsies and cases were carefully reviewed in a blinded manner. Inconclusive cases were regarded as not having celiac disease for calculation of diagnostic accuracy. The primary aim was to determine whether the nonbiopsy approach identifies children with celiac disease with a positive predictive value (PPV) above 99% in clinical practice. Secondary aims included comparing performance of different serological tests and to determine whether the suggested criteria can be simplified. Results Of 803 children recruited for the study, 96 were excluded due to incomplete data, low level of IgA, or poor-quality biopsies. In the remaining 707 children (65.1% girls; median age, 6.2 years), 645 were diagnosed with celiac disease, 46 were found not to have celiac disease, and 16 had inconclusive results. Findings from local laboratories of TGA-IgA 10-fold or more the ULN, a positive result from the test for EMA, and any symptom identified children with celiac disease (n = 399) with a PPV of 99.75 (95% confidence interval [CI], 98.61–99.99); the PPV was 100.00 (95% CI, 98.68–100.00) when only malabsorption symptoms were used instead of any symptom (n = 278). Inclusion of HLA analyses did not increase accuracy. Findings from central laboratories differed greatly for patients with lower levels of antibodies, but when levels of TGA-IgA were 10-fold or more the ULN, PPVs ranged from 99.63 (95% CI, 98.67–99.96) to 100.00 (95% CI, 99.23–100.00). Conclusions Children can be accurately diagnosed with celiac disease without biopsy analysis. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide. HLA analysis is not required for accurate diagnosis. Clinical Trial Registration no: DRKS00003555. © 2017 AGA Institut
    corecore