2,734 research outputs found

    Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    Full text link
    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. The Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure

    In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory

    Full text link
    Spatial and temporal variability of HfOx-based resistive random access memory (RRAM) are investigated for manufacturing and product designs. Manufacturing variability is characterized at different levels including lots, wafers, and chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write cycle resistance statistics. Using the electrical in-line-test cycle data, a method is developed to derive BERs as functions of the design margin, to provide guidance for technology evaluation and product design. The proposed BER calculation can also be used in the off-line bench test and build-in-self-test (BIST) for adaptive error correction and for the other types of random access memories.Comment: 4 pages. Memory Workshop (IMW), 2015 IEEE Internationa

    Secret key distillation across a quantum wiretap channel under restricted eavesdropping

    Full text link
    The theory of quantum cryptography aims to guarantee unconditional information-theoretic security against an omnipotent eavesdropper. In many practical scenarios, however, the assumption of an all-powerful adversary is excessive and can be relaxed considerably. In this paper we study secret key distillation across a lossy and noisy quantum wiretap channel between Alice and Bob, with a separately parameterized realistically lossy quantum channel to the eavesdropper Eve. We show that under such restricted eavesdropping, the key rates achievable can exceed the secret key distillation capacity against an unrestricted eavesdropper in the quantum wiretap channel. Further, we show upper bounds on the key rates based on the relative entropy of entanglement. This simple restricted eavesdropping model is widely applicable, e.g., to free-space quantum optical communication, where realistic collection of light by Eve is limited by the finite size of her optical aperture. Future work will include calculating bounds on the amount of light Eve can collect under various realistic scenarios.Comment: 14 pages, 19 figures. We welcome comments and suggestion

    COMBINATORIAL EFFECT OF D-AMINOACIDS AND TETRACYCLINE AGAINST PSEUDOMONAS AERUGINOSA BIOFILM

    Get PDF
    Objective: The present study attempted to evaluate the anti-biofilm activity of D-amino acids (D-AAs) on Pseudomonas aeruginosa and determine if the combination of D-AAs with tetracycline enhances the anti-biofilm activity in vitro and ex vivo.Methods: Different D-AAs were tested for antibiofilm activity against wild type P. aeruginosa PAO1 and two multidrug resistant P. aeruginosa clinical strains in the presence of sub inhibitory concentrations of tetracycline using crystal violet microtitre plate assay. Results were further validated using in vitro wound dressing and ex vivo porcine skin models followed by cytotoxicity and hemocompatibility studies.Results: D-tryptophan (5 mmol) showed 61 % reduction in biofilm formation of P. aeruginosa. Interestingly combinatorial effect of 5 mmol D-tryptophan and 0.5 minimum inhibitory concentration (MIC) (7.5µg/ml) tetracycline showed 90% reduction in biofilm formation. 5 mmol D-methionine shows 28 % reduction and combination with tetracycline shows 41% reduction in biofilm formation of P. aeruginosa. D-leucine and D-tyrosine alone or in combination with tetracycline did not show significant anti-biofilm activity. D tryptophan-tetracycline combination could reduce 80 % and 77 % reduction in biofilm formation in two multi drug resistant P. aeruginosa clinical strains. D-tryptophan-tetracycline-combination could also reduce 76% and 66% reduction in biofilm formation in wound dressing model and porcine skin explant respectively. The cytotoxicity and hemocompatibility studies did not show significant toxicity when this combination was used.Conclusion: The results established the potential therapeutic application of D-tryptophan alone or in combination with tetracycline for treating biofilm associated clinical problems caused by P. aeruginosa

    Advances in chemical and biological methods to identify microorganisms—from past to present

    Get PDF
    Fast detection and identification of microorganisms is a challenging and significant feature from industry to medicine. Standard approaches are known to be very time-consuming and labor-intensive (e.g., culture media and biochemical tests). Conversely, screening techniques demand a quick and low-cost grouping of bacterial/fungal isolates and current analysis call for broad reports of microorganisms, involving the application of molecular techniques (e.g., 16S ribosomal RNA gene sequencing based on polymerase chain reaction). The goal of this review is to present the past and the present methods of detection and identification of microorganisms, and to discuss their advantages and their limitations.C.F.R. would like to thank the Portuguese Foundation for Science and Technology (FCT–Portugal) for the C.F.R. for the project UID/EQU/00511/2019—Laboratory for Process Engineering, Environment, Biotechnology, and Energy—LEPABE funded by national funds through FCT/MCTES (PIDDAC) and N.M. for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020 - Programa Operacional Regional do Norte” (NORTE-01-0145-FEDER-000012)

    Uterine selection of human embryos at implantation

    Get PDF
    Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation

    Coexistence of surface oxygen vacancy and interface conducting states in LaAlO3/SrTiO3 revealed by low-angle resonant soft X-ray scattering

    Full text link
    Oxide heterostructures have shown rich physics phenomena, particularly in the conjunction of exotic insulator-metal transition (IMT) at the interface between polar insulator LaAlO3 and non-polar insulator SrTiO3 (LaAlO3/SrTiO3). Polarization catastrophe model has suggested an electronic reconstruction yielding to metallicity at both the interface and surface. Another scenario is the occurrence of surface oxygen vacancy at LaAlO3 (surface-Ov), which has predicted surface-to-interface charge transfer yielding metallic interface but insulating surface. To clarify the origin of IMT, one should probe surface-Ov and the associated electronic structures at both the surface and the buried interface simultaneously. Here, using low-angle resonant soft X-ray scattering (LA-RSXS) supported with first-principles calculations, we reveal the co-existence of the surface-Ov state and the interface conducting state only in conducting LaAlO3/SrTiO3 (001) films. Interestingly, both the surface-Ov state and the interface conducting state are absent for the insulating film. As a function of Ov density, while the surface-Ov state is responsible for the IMT, the spatial charge distribution is found responsible for a transition from two-dimensional-like to three-dimensional-like conducting accompanied by spectral weight transfer, revealing the importance of electronic correlation. Our results show the importance of surface-Ov in determining interface properties and provides a new strategy in utilizing LA-RSXS to directly probe the surface and buried interface electronic properties in complex oxide heterostructures

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment
    • …
    corecore