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Abstract: Fast detection and identification of microorganisms is a challenging and significant
feature from industry to medicine. Standard approaches are known to be very time-consuming and
labor-intensive (e.g., culture media and biochemical tests). Conversely, screening techniques demand
a quick and low-cost grouping of bacterial/fungal isolates and current analysis call for broad reports
of microorganisms, involving the application of molecular techniques (e.g., 16S ribosomal RNA gene
sequencing based on polymerase chain reaction). The goal of this review is to present the past and the
present methods of detection and identification of microorganisms, and to discuss their advantages
and their limitations.
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1. Introduction

Microorganisms have always been extremely important for human life and bacteria, yeasts and
molds have been known for both positive and negative reasons. Just like in the past, as it is now,
they are inevitably associated with biotechnology, food sciences, medicine, genetic engineering, and
other fields of life. On one hand, they are used for their unique features which enable the production
of antibiotics, hormones, amino acids, and other therapeutic compounds, and also production of
food and food-related products, as well as decomposition of components such as lignocellulosic
biomass for second-generation ethanol or biogas [1]. At the same time, selected genetic features and
biochemical abilities of microorganisms make them dangerous for industry (food spoilage) as well
as human health [2]. In fact, it is estimated that approximately 1400 pathogens can cause human
diseases. Pathogenic bacteria alone are etiological agents of 350 million cases of foodborne diseases [3].
In the United States alone, 48 million foodborne illnesses occur annually, which led to approximately
128,000 hospitalizations and 3000 deaths. Poor water hygiene can be a cause of 1.7 million deaths a
year worldwide, and nine of 10 deaths are in children and virtually all of the deaths are in developing
countries. Furthermore, the majority of the pathogens responsible for these diseases and deaths
includes Campylobacter jejuni, enterotoxigenic Escherichia coli, Shigella spp. and Vibrio cholerae, Aeromonas
spp., enterotoxigenic Bacteroides fragilis, Clostridium difficile as well as Cryptosporidium parvum [4].

Two factors determine the potential use of microorganisms in biotechnological processes, and
also the pathogenicity of other strains are their genetic features and biochemical abilities. In the near
future, industrial application as well as treatment of infection, will be possible after characterization,
identification, and following taxonomic classification of the biological material. It is necessary to
emphasize that taxonomy and systematics, very often used interchangeably, are in fact two different
terms. Although systematics deals with the diversity of organisms, relationships, and possible
interactions, taxonomy is a classification of organisms in a hierarchical structure of homogeneous
groups that consist of descendants of the nearest common ancestor. Despite a high degree of phenotypic
similarity, every assemblage of an individual shows some degree of phenotypic diversity due to
genotypic variation. The greater the differences at the genetic level, the farther the related organisms
are [1]. Commonly known and used examples of hierarchical classification are the kingdom, division,
class, family, genus, species, and finally, strain. Research works in the field of classification, systematics,
and identification of microorganisms are interconnected and have an impact on each other. Accurate
identification affects taxonomic classification of microorganisms as well as their systematics, and vice
versa. Therefore, the broader the research aimed at the characterization of an individual microorganism,
the more precise its identification, and thus the classification and systematics [1]. Accordingly, the
“polyphasic” methodology is centered on morphological and biochemical data complemented with
molecular techniques data. The combination of the classical approach together with 16S rRNA genes,
molecular fingerprinting techniques, and/or other molecular markers is considered an extremely
important foundation for the identification and classification of microbes [2].

The accurate identification of microbes is essential for scientists involved in many areas of
applied research and industry which ranges from clinical microbiology to food production. There are
many criteria for the division of the abundance of methods used in the area of the identification of
microorganism, however, generally they can be assigned to direct and indirect techniques (Table 1).



Microorganisms 2019, 7, 130 3 of 32

Table 1. Methods used in the area of microorganism identification.

Type Basis References

Indirect
- Conventional methods.

Isolation and culture of microorganisms and the determination of their
various phenotypic characteristics

[3]

Direct

- Culture-independent.
May be used to identify specific microbes in a mixed population as well as
identify non-culturable microbes. For example, microscopic techniques are
powerful tools used in the identification of microorganisms by visualization
of the characteristic structures and for organisms in the VBNC (viable but

not culturable) state.

[4]

The time needed for microorganism identification based on the traditional approach which
includes morphology, physiology, chemistry, and biochemical characterization is estimated to be at
least 2 to 5 days, or even up to a dozen days in the case of molds. In addition, most phenotypic
methods used in the microbiological laboratories are labor intensive as well as material consuming.
Importantly, phenotypic methods are not always useful to identify unambiguously the microorganism
to the species level, or much more often to the strain level [5]. One of the strategies to reduce time for
microbial identification is the use of molecular biology techniques which may also be supplemented
with numerous molecular fingerprinting techniques [6]. Each method has its strengths and weaknesses,
and the most recent research approach involves the use of a compilation of multivariate techniques.
Such implementation seems to have great potential for the future. In order to obtain the most precise
identification, classification, and systematics of microorganisms, it is extremely important to choose
appropriate techniques, as well as have a thorough understanding of the mechanisms of their action.
Therefore, the purpose of this literature review is to provide a description of the traditional and novel
methods of identification (Figure 1), as well as their strengths and limitations.
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2. Methods to Identify Microorganisms

It is not possible to focus on microorganism identification without a reference to taxonomy, as it
is a common idea that “identification is a part of taxonomy”. The word taxonomy comes from the
Greek words taxis (arrangement) and nomos (law) and it is the science of the description, classification,
and inventory of life [7–9]. Taxonomy dates back to ancient Greece, when Aristotle proposed the first
classification of living organisms, and modern taxonomy was created by Linnaeus, who introduced
the binomial classification which is still used today [10,11] and has been most responsible for the most
recent taxonomy classifications [1].

2.1. Historical Evolution of Microorganism Identification

During the last decade, scientists have searched for the more prompt and effective means of
microbial identification [1]. For several years, the phenotypic classification was the only identification
approach, although this methodology always resulted in uncertainties and difficulties with the analysis.
In fact, many reports described inaccuracies in phenotype-based speciation of microbial strains [12].
For example, Yeung et al. [13] described some typing discrepancies occurring in Lactobacillus acidophilus
and Lactobacillus casei groups using phenotype-based techniques. Lagier et al. [14] reported some
key experiments for a phenotype-based identification, generally used in the past, such as pH-based
reactions, enzyme profile, carbon source utilization, acid detection, and cellular fatty acids. Generally,
phenotypic methods were based on dichotomic keys, and the first test to be performed was Gram
staining, followed by catalase and oxidase tests. First, carbohydrate metabolism was evaluated
through acid production analysis (pH), and the end products (CO2, acetate, and lactate). Later, tests
for enzymes began (glucuronidase, glucosidase, galactosidase, and fucosidase) [14]. An upgrade
of the phenotype-based tests were the tests for protein and amino acid metabolism, such as the
production of indole and H2S, gelatin and casein digestion, decarboxylation of lysine, ornithine,
arginine, arginine dihydrolase, phenylalanine deaminase, and urease. Other phenotypic tests included
those for lipid metabolism, such as lipase and lecithinase on egg yolk agar and the digestion of tween,
or the experiments based on cell wall receptors, including optochin, lysozyme susceptibility, and
bile solubility tests, frequently used for the differentiation of Gram-positive cocci [14]. Nowadays,
numerous phenotypic characteristics can be concurrently verified in 4 to 48 h by applying commercial
kits and/or automated phenotypic systems. Phenotypic tests are generally organized in dichotomous
keys that are a series of yes/no tests to identify a microorganism. The tests are put in a logical order
and each result indicates the next test to be done as first described by Skerman (1959) [15]. However, in
1965, Steel wrote “Difficulties in interpretation of keys arise where strains behave inconsistently in
some respect . . . . Some characters are almost invariably positive or negative, but characters of such
constancy are usually shared by similar organisms, and although they are important in characterizing
an organism, have little value in distinguishing it from its neighbors.” [16]. Therefore, he realized that
some difficulties could arise and lead to a misleading identification.

Therefore, in the late 20th century, molecular tools and sequence databases emerged. These
methods, significantly contributed to expand the power of microbiology and increased the number of
known microbial species (1971 in 1980, 8168 in 2007, and 12,391 in 2013) [14]. According to Madigan et
al. [17], the date of birth of molecular biology was 1941, when DNA was discovered as the genetic
material (although the bacterial genetics was discovered later, in 1946). The use of genetics as a tool
for bacterial identification started in 1985 with the design of PCR (polymerase chain reaction). Since
then, many methods have been developed and designed (culture dependent and culture independent
approaches), based on different principles (DNA sequencing, 16S rRNA sequencing, and hybridization).
Omics tools, metagenomics, proteomics, lipidomics, transcriptomics, and metabolomics [18], aim
at a collective high-throughput characterization and quantification of pools of biological molecules
that translate into the structure, function, and dynamics of an organism or organisms [19]. These
approaches have some strong practical implications and are currently used for many purposes (e.g.,
microbial ecology, phylogeny, functional genome analysis, and transcriptional profiling) [18]. The most
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recent advances of microbial identification occurred in the omics era and represent something similar
to a rediscovery of past approaches and methods. It is culturomics and represents a rebirth of some
phenotypic approaches. It was first proposed for probiotics by Donelli et al. [12] and it was based
on the polyphasic approach proposed by Colwell [20] for the Vibrio genus. In this approach, even if
phenotypic characters frequently meet between genetically dissimilar species, molecular methods alone
are frequently not able to fix clear limits among phylogenetically associated species [12]. Accordingly,
a restructured scheme for the correct identification must focus on its morphological, physiological and
biochemical features, and its genetic profile [12].

2.2. Identification Methods Using Chromogenic Media

In these methods, the identification of microorganisms based on cultivation has the initial objective
of obtaining pure culture. A pure culture containing a single type of microorganism can be obtained in
various ways from enrichment cultures.

Frequently used isolation methods include seeding by dewatering, deep seeding in solid media,
and liquid dilution. For organisms that form colonies in solid medium plates, the technique of seeding
by exhaustion is fast, easy, and the method of choice. From the repeated collection and seeding of an
isolated colony, a pure culture can be obtained. By using appropriate incubation devices it is possible
to purify both aerobic and anaerobic organisms in solid medium plates by using the seeding method
by depletion. It is also important to point out that through cultivation, the microorganism can be
identified from the production of certain metabolites released in the medium with lactic acid and others,
and therefore the technique is based on the reaction of the medium with the released metabolites [21].
On the other hand, the identification of microorganisms that is based on cultivation alone is quite
incomplete, since the enrichment distortion is possibly a serious problem in studies on biodiversity
dependent on cultivation. In fact, microbial ecologists estimate that, to date, less than 0.1% of the
phylogotypes revealed by community molecular analysis exist in the form of laboratory cultures [17].

2.3. Microscopy Techniques

The microscope is an essential identification tool for microorganisms present in a natural sample.
Microscopy images enable analysis of shape, tracking of motion, and classification of biological objects.
The microscope-based observation is still frequently applied to define the morphological differences
of interesting bacteria, such as streptococci, staphylococci, bacilli (e.g., Listeria monocytogenes, E. coli
or Salmonella spp.), and Vibrio, in both clinical and research sceneries [22–24]. Notwithstanding its
significance, automated segmentation remains challenging for several widely-used non-fluorescence,
interference-based microscopy imaging modalities (e.g., contrast microscopy) [25,26].

Nonetheless, microscopy alone is not sufficient for microorganism identifications for several
reasons: small cells that are usually present are difficult to identify; prokaryotes vary widely in size and
some cells are close to the resolution limits of the optical microscope; when observing natural samples,
such cells can easily be missed, especially if the sample contains a large amount of particulate matter
or a large number of larger cells; and it is often difficult to differentiate living cells from dead cells
or cells from inanimate materials present in natural samples [17]. Additionally, the major limitation
related to microscopy is that none of them reveal the phylogenetic diversity of the microorganisms
present in the study habitat [17]. Although, when microscopic analysis is associated with other tools, it
becomes more promising. In addition, there are techniques of electron microscopy that are powerful
instruments in the identification of microorganisms: transmission electron microscopy (TEM); scanning
electron microscopy (SEM), confocal microscopy (CLSM), and atomic force microscopy (ATM) [27,28].
These techniques have great value mainly in the identification of microorganisms in biofilms [29].
Furthermore, microscopic techniques are generally associated with fluorescent dyes, which makes the
visualization more specific and easier to perform. As an example, DAPI (49,6-diamido-2-phenylindole)
is a broad use for this purpose, as is acridine orange dye. There is also increasing use of SYBR® Green I,
a dye that imparts bright fluorescence to all microorganisms, including viruses. These dyes bind to the
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DNA and fluoresce strongly when exposed to ultraviolet (UV) arraying (DAPI absorption, at 400 nm,
acridine orange absorption maximum, 500 nm, SYBR Green I, maximum absorption, 497 nm), causing
the microbial cells to be visible [30,31]. Depending on the sample, background coloring is occasionally
a problem for fluorescent dyes, however, as these dyes are specific for nucleic acids they mostly do
not react with the inert matter. Thus, they can be used for many soil samples, as well as from aquatic
sources. In addition, staining with SYBR® Green I provides excellent identification of aquatic virus
populations. For diluted aquatic samples, cells can be stained after collection on a membrane surface
by filtration [32,33].

The inverted optical microscope with laser tweezers can also be used. These consist of a precisely
focused infrared laser equipped with a micromanipulation device. It is possible to capture a single cell
because the laser generates a force that pushes a microbial cell (or other small object) and holds it in
place. When the laser beam is moved, the captured cell escorts it. If the sample is in a capillary tube, a
single cell can be captured optically and away from the contaminating organisms. The cell can then be
isolated by the broken tube in a region between the cell and the contaminants and the cell can then
be inoculated into a small tube containing sterile medium [34,35]. When associated with the use of
staining techniques capable of identifying, in particular, organisms, the laser tweezers can be used to
select organisms of interest from a mixture for purification and subsequent laboratory study [35].

Individual cells can also be identified by flow cytometry, a technique for counting and evaluating
microscopic particles by suspending them in a fluid flow and passing them through an electronic
detector. This method evaluates selected criteria including the size, shape, or fluorescent properties of
individual cells as they pass through an index detector of many thousands of cells per second, and it
can also classify the individual cells based on measurement criteria. The latter capability of the flow
cytometer can be used to enrich a particular cell type from a mixture of various types [36].

3. Biochemical Analytical Methods to Detect Microorganisms

3.1. Traditional Biochemical Methods

In microbiology, traditional identification methods rely mainly on cultivation proceedings
employing various media to enumerate, isolate, and identify specific microorganisms. For many years
these methods were employed extensively and they continue to be used nowadays, especially in some
laboratorial routines where a particular type of microorganism has to be identified rapidly (for example,
in a medical diagnostic for the detection of a particular pathogen). Although being inexpensive and
allowing both quantitative and qualitative information about the diversity of microorganisms present
in a sample, however, these methods are laborious and time consuming (media preparation, dilution,
plating, incubation, counting, isolation, and characterization), and results are only observed after
several days, and frequently false positives are obtained especially when considering similar microbial
species [37,38]. Another problem associated with culture-based methods is the fact that they cannot
identify non-culturable cells.

Phenotypic identification methods usually incorporate reactions to different chemicals. One of
the traditional methods most used is a simple visual detection of growth of the tested organism in the
presence of a substrate by increased turbidity. Results are determined by comparing the microbial
under analysis with a control test, and a Wickerham card is used to read the turbidity [39]. This
type of reaction may be difficult to read and always involves a minimum of an overnight incubation.
Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) [40], although efficient, are
expensive and are designed for only some bacterial species. A typical model is the analytical profile
index (API) (bioMérieux, Craponne, France), where standard methods are integrated into miniaturized
reaction couples, scored as “positive” and “negative” and finally matched to a scoring system on the
basis of “best fit”, to create an analytical profile [41]. For many years researchers have used API 20E
(analytical profile index 20E) testing apparatus, which consisted of a plastic piece with 20 cupules that
contain pH-based substrates allowing the identification of almost 100 taxa [42–44]. Until 1992, this
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method was considered the “gold standard” especially in clinical microbiology. A significant advantage
of this method was the availability of an extensive database, although it had a major disadvantage
associated with it being time-consuming. Other automatic methods started to appear in this decade
including improvements of the API 20E system (for a more detailed review see [39]), in an attempt
to reduce the time needed for the procedure using recurring automations. The BBL Crystal (Becton
Dickinson, NJ, USA) [45] is also a variation of the API system. An automated version of the API is the
Vitek® system (bioMérieux, Craponne, France), first developed in the 1970s, which eliminated the
subjectivity of the reading of test reactions [46]. The Vitek® system is useful for simultaneous bacterial
identification and antimicrobial susceptibility testing (AST) profiles from isolated patient samples [47].
The system uses a totally automated broth microdilution technique that applies attenuation of light
measured by an optical scanner for growth or no growth detection (it is crucial that the samples in
the cards are pure isolates) [48]. The device regularly monitors growth over a period of 18–24 h for
bacteria and 36 h for yeast. Although it is versatile, there are some microorganisms that lead to correct
MIC reports or yield unreliably (e.g., pseudomonas) [47,49].A variation of the Vitek® is the Biolog
OmniLog System. It is a rapid, standardized, method for determining bacterial oxidation (tetrazolium
redox dye) of different and simultaneous carbon sources (sugars, carboxylic acids, amino acids, and
peptides, where 71 are carbon sources and 23 are chemical assays counting pH, salt tolerance, and
chemical sensitivity tests). The results obtained are compared to a database (through an analysis of the
obtained “yes–no” reactions) [50]. It is available for the phenotypic identification of bacteria and fungi
(filamentous and yeasts) [51].

With the advancement of biochemistry knowledge and the appearance of more robust
instrumentation, these methods started to be used less and more modern biochemical methods
were developed, with numerous advantages over conventional culture-based methods, such as short
analysis times and the ability to simultaneously determine many microorganisms, while retaining
accuracy of the results [37,39].

3.2. Mass Spectrometry-Based Methods

Research in microorganism identification has evolved mainly by following the strategy of reducing
the time required for the identification of a particular microbial in routine diagnostics. For this, the use
of semiautomatic and automatic systems based on biochemical methods was a major breakthrough in
this area. For a method to be considered successful nowadays, the attainment of results should take a
maximum of 24 h, and in an emergency there is an urgent need for this time frame to be even smaller.
Methods based on mass spectrometry (MS) have gained popularity as a microbial typing tool due to
their speed, reduced costs, simplicity, and applicability for a wide range of microorganisms such as
bacteria, archaea, and fungi [52,53]. With the advancements observed in MS methods, along with new
data analysis, and processing and visualization tools, our understanding of biological systems has also
increased, since we could analyze diverse sets of biomolecules, such as proteins, lipids, carbohydrates,
and amino acids [53–57]. Several ionization and separation techniques can be coupled with MS, such as
gas chromatography (GC) [52,58–61], matrix-assisted laser desorption ionization time-of-flight mode
(MALDI-TOF) [62–68], electromigration techniques [37,69], and electrospray ionization (ESI) [70,71].

3.2.1. Liquid Chromatography: High Performance Liquid Chromatography (HPLC)-Based Methods

The combination of liquid chromatography (LC) with MS (LC-MS), despite initial hesitations,
revolutionized analytical determination of metabolome, consequently, allowing microorganism
identification, by enabling the analysis of non-volatile or thermally labile high molecular compounds
where gas chromatography and mass spectrometry (GC-MS) approaches were not suitable [72–74].
LC partings compatible with ESI are required and usually due to the polar and ionizable characteristics
of most metabolites [75].

Comparing LC-MS with GC-MS, the temperatures necessary are lower and the sample volatility
is not mandatory, simplifying sample preparation and lowering costs. LC-MS is mainly used in
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clinical applications for microorganism identification [76], but it is also useful in the detection of
commercially available compounds of the in silico metabolome of Bacillus subtilis and Escherichia
coli, and determining the complete metabolome coverage of Saccharomyces cerevisiae [75]. In LC-MS,
samples are injected into the solvent stream using the injector and are divided within the column to
which the stationary phase is chemically bound. Then, the eluent in the column passes across a flow
cell in a spectrometer for non-destructive recognition of compounds with spectrometric structures
(chromophore or fluorophore).

Progress in LC-MS technology was made by advances in mass analyzers and in the ionization
technique, which led to new platforms: fast LC-MS, LC-MALDI-MS, LC-ESI-MS-MS, LC- Nuclear
Magnetic Resonance (NMR)-MS, hydrophilic interaction liquid chromatography (HILIC)-MS, reverse
phase LC-MS and ion mobility spectrometry [77–82]. In fact, HPLC is derived from LC, but the
working pressures are meaningfully higher. Whereas, normal LC relies on the force of gravity to pass
the mobile phase through the column, and in this methodology pressures are classically between
50 and 350 bars. The sample mixture is brought by the sampler into the column and the desired
flow is provided by the pumps. The detector creates a signal proportional to the quantity of sample
component in the column and the digital microprocessor controls the instrument providing data
analysis. Presently, it can be used in monolithic columns [83–86] or at higher temperatures—high
temperature liquid chromatography [87–89]. Some concerns which have to be considered when
choosing HPLC for microbial detection are that the equipment is expensive and it demands complex
maintenance procedures, and therefore some caution is advisable for an adequate interpretation of
results. Denaturing high-performance liquid chromatography (DHPLC) is a new and promising
approach, especially regarding bacterial identification and monitoring [90,91]. This technology
is an automated system that allows separation of PCR products using ion-pair, reversed-phase,
high-performance, liquid chromatography (IP RP HPLC).

3.2.2. Gas Chromatography–Mass Spectrometry

GC coupled to MS has been extensively used in the identification of complex biological
mixtures [92–94]. The GC system includes a gas supply, an injector, and a column inside an oven,
coupled to the mass spectrometer. The data analysis can be executed using constant flow or pressure or
by a flow program. While MS delivers individual mass spectra that can distinguish amongst chemically
diverse metabolites, GC has a good separation efficiency. Additionally, GC-MS offers sensitivity,
robustness, easiness of application, low cost, and abundant linear range, as well as commercial and
public libraries accessibility [95–97]. This method is generally acknowledged for nonpolar molecule
analysis (e.g., lipid components) [98], and is used for classification of microorganisms via assessment of
their lipid elements. For instance, Curie-point pyrolysis-MS (Py–GC-MS) is applied for the distinction
between Gram-positive and Gram-negative bacteria [99]. In addition, Ishida et al. [100] used thermally
assisted hydrolysis and methylation-GC and MALDI-MS combined with on-probe sample pretreatment
to directly analyze E. coli K-12 phospholipids in whole cells. In yeasts, this analysis has also been
shown to be possible [101] for several species [102–104].

The main drawback of GC-MS is that it demands that the analytes are in a volatile form and
as several metabolites are nonvolatile, time-consuming derivatization steps are required [105–107].
To optimize the technique’s performance, there are some technologies that can be conjugated with
GC-MS, for example, GC-GC time-of-flight (TOF)-MS [108,109]. In this case, two different GC columns
are conjugated, increasing the metabolite detection coverage, and the speed of scanning rate (TOF-MS)
with extra sensitivity for improved detection. However, this method has high costs, so it is not yet
routinely used. The connection of the flame ionization detector (FID)–GC-FID can also be applied for
routine sample analysis, being rapid, very sensitive, and with an associated lower cost [110].
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3.2.3. Matrix-Assisted Laser Desorption/Ionization (MALDI)-Time-of-Flight (TOF)

MALDI-TOF MS is the latest next generation tool being used for the rapid identification and
classification of microorganisms. It is based on the ionization of the microbial cells with short laser
pulses and then accelerating the particles in a vacuum system using an electric field [56,66]. After the
ionization, a molecular fingerprint in the form of a spectra profile is obtained, which is specific for each
microorganism. This spectrum is then compared to an existing database, resulting in its identification
by an automated program. Preparation of samples for MALDI-TOF MS involves crystallization with a
large molar excess of matrix (usually a UV-absorbing organic acid) on target plates [62].

An alternative to MALDI-TOF which sometimes entails problems associated with the use of a
chemical matrix (mixed with the sample) and the laser (used to effect desorption and ionization of the
analyte), is a technique called electrospray ionization (ESI)-MS that analyzes samples in a liquid state
and the ionization is carried out at atmospheric pressure, without recurring to the same lasers as in
MALDI-TOF-MS. Due to this particular aspect, ESI-MS has a large spectra of applications regarding
microbial identification [71,111–113].

3.3. Spectroscopic Methods

Fiber optics spectroscopy is a powerful multivariate and reproducible methodology, showing
great potential in today’s research. It is used in systems biology, being a nondestructive, very simple,
and to some extent, precise approach, allowing vast amounts of information to be obtained in one
measurement [114,115]. Fiber optics spectroscopy processes vibrations and rotations of molecular
functional groups, which are outcomes from the energy shifted when radiation interacts with a sample,
and originates electronic excitation, vibrational change, and rotational change. The spectra will
vary depending on the sample molecular groups, and therefore, they are linked to their chemical
composition (proteins, lipids, carbohydrates, membranes, pharmaceuticals, human tissues, among
others (reviewed in [116]). Fluids, cells or tissues can be explored to find metabolic fingerprints, and in
theory, any sample can be virtually analyzed by spectroscopy. With respect to the identification of
microorganisms, these methods are of great value and complementary to molecular biology, because
they do not normally need the destruction of the sample. In the recent past due to some limitations
found, some caution was advised by some authors when using these methods, suggesting a careful
validation of each procedure before its use.

Numerous techniques for spectroscopic analysis are accessible. The subdivision is not always easy,
varying from the type of radiative energy, the nature of the interaction or the material below analysis.

3.3.1. Infrared Spectroscopy (FTIR)

Recent advancements have been made especially in the application of new spectroscopic methods.
One of these methods, with great developments in several areas of microbiology, is the Fourier
transform infrared spectroscopy (FTIR). FTIR is versatile, fast, non-invasive, and it is easy to perform
compared to other methodologies [114,117–120]. This analytical technique is a chemical and label-free
procedure which gives a clear elucidation about the chemical composition and the physical state
of the entire sample where several biomolecules can be analyzed. With the use of only a minimal
amount of sample, it is possible to obtain, in a single measurement, detailed information about the
main biomolecules such as lipids, proteins, carbohydrates, and nucleic acids [121]. Likewise, FTIR
allows an economic biochemical characterization of complex biological systems, comprising the intact
cells, tissues, and even whole-model organisms [122].

The use of this technique to evaluate microorganisms as biological systems results in a very
complex spectrum with the overlapping absorption bands of the principal compounds. Therefore, a
proper multivariate statistical analysis is of crucial importance in order to extract from the spectra only
the relevant information of the biological process under study [122]. FTIR spectroscopy of biological
systems provides a complex infrared absorption spectrum that should be preprocessed and then
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analyzed by applying resolution enhancement approaches. With respect to the operation mode of this
technique, it comprises an IR energy source that emits a broad band of distinct wavelengths. After this,
the radiation passes through an interferometer responsible for modulating the wavelength of IR. In
the sample compartment, the resulting IR beam is absorbed in distinct and specific wavelengths by
the organic or inorganic material. The last step comprises the measurement of the intensity of the IR
beam by a detector producing an interferogram, that is, subsequently, analyzed by a computer using
Fourier transforms, giving rise to an IR spectrum. Additionally, with the use of second derivatives it is
possible to promote a clear separation of the absorption components, thus helping to understand their
variations throughout the biological process under study. Subsequently, an adequate multivariate
analysis should be implemented to validate the spectroscopic results, as well as to identify the main
relevant bands of the process studied. Finally, the interpretation and analysis of the spectral data should
be coupled with other standard methods to ensure the reliability of FTIR spectroscopy analysis [122].
Some of the principal advantages of this spectroscopic technique are related to: (I) the possibility
of analyzing several compounds at the same time; (II) the facility of sample preparation, since it
does not require cell lysis to release the biomolecules to be evaluated; (III) the association of an
environmentally friendly role, as the toxic compounds are not implemented in this method; and (IV)
the possibility of using this technique for real-time process monitoring and the accomplishment of
high-throughput screenings [121]. Other regions of the infrared spectrum can be used in combination
with spectroscopy to analyze microbial diversity. In particular, considering the infrared spectral regions,
the wavelength region between 0.78 and 1000 µm can be divided into five subregions. However,
the most relevant for spectroscopic purposes are the near-infrared, the mid-infrared (MIR), and the
far-infrared radiation [123].

3.3.2. Raman Spectroscopy–Vibrational Spectroscopy

Another spectroscopic method largely used is Raman spectroscopy, which has gained a wider
acceptance as a mature analytical tool for the non-invasive and rapid characterization and identification
of microbes during roughly the last 15 years. It discriminates itself from other systems by the
manageability of use at a low cost, high speed, and an extensive report (chemical composition, the
structure, and interactions of biomolecules in the microorganisms) [124,125]. In fact, this procedure
uses vibrational, rotational, and other low-frequency modes in the system in order to produce a
structural fingerprint by which molecules can be identified, providing complementary information
to traditional spectroscopic methods, being many times, as will be described later, advantageous to
combine several spectroscopic methods together. The structural fingerprint obtained is then used
to identify microorganisms, as this method is capable of correctly distinguish between species and
strains within a few hours. Although this high specificity is attributed to Raman spectroscopy, its
sensitivity is rather poor. As in other spectroscopic characterizations, Raman spectroscopy depends
on its interaction with the atoms and molecules, when light is incident on the matter. When atoms
vibrate it will change the polarizability of functional groups, having nonpolar groups such as C-C
and S-S intense Raman bands. Raman spectroscopy evaluates the inelastic scattering of radiation of
monochromatic light, promoting a spectral shift, i.e., “Raman” shift, which scores from the interface
of light with electron clouds surrounding molecular bonds [126,127]. Raman spectroscopy has been
largely applied to microbial identification in recent years [126–130].

Both infrared and Raman spectroscopies are forms of vibrational spectroscopy and can provide
“whole organism fingerprinting” as stated by [126]. Because vibrational spectroscopy discriminates
microorganisms based on their biochemical composition, it is very useful for differentiating between
minor differences among the same species.

3.3.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy is an alternative and potent technique for microorganism identification. Strong
magnetic fields and radio frequency pulses to the nuclei of the atoms are applied and in the case of atoms
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such as 1H or 13C, the magnetic field will cause a nuclear spin, absorbing the radio frequency energy
(low-energy to high-energy spin states), and the emission of radiation is detected [131]. As compared
with other methods, NMR can be performed in a non-invasive manner. Its sensitivity is reduced and it
has a lower limit of detection (about 1–5 µM and a requirement for relatively large sample sizes of
~500 µL), although these issues are balanced by that fact that it is a quantitative method [132].

3.4. Electrokinetic Separation Methods

The term electrokinetics refers in science to the relative motion of a charged particle through a
matrix. These methods make use of the differences in microbial composition to obtain different migration
patterns, and in this way, without recurring to sample labelling, separate different microbial species.

Capillary electrophoresis (CE)–MS was developed and first published in 1989 by Joseph Loo.
It combines the separation process of electrophoresis with MS detection [133]. In comparison with
GC and LC, it includes better separation efficiencies, the use of very little sample volumes, speed,
small reagent costs, and the possibility to separate cations, anions and uncharged molecules in a
single run. This approach has been used to analyze the metabolome of numerous microorganisms,
both for target and nontarget studies, having interesting outcomes in detection and quantification of
several metabolite classes [134,135] (e.g., inorganic ions [136], organic acids [137], amino acids [138],
nucleotides/nucleosides [139], vitamins [140], thiols [141], carbohydrates [142], and peptides [143]).
CE has deficient sensitivity related to the small sample volumes, particularly when attached to MS, has
a restricted quantity of accessible commercial libraries, and reduced retention time reproducibility.

Armstrong et al. [144] combined CE with capillary isoelectric focusing (CIEF) to separate and
identify seven microbial species with a wide range of sizes and shapes. The uniqueness of this
study was that it demonstrated that intact biological cells could be efficiently separated by employing
techniques that are usually limited to macromolecules. Nowadays, another possibility used is the
combination of CE with fluorescence, which can be used to observe the separation process, and in this
way monitor the operational conditions and the microbial dynamics in terms of cell aggregation and
focusing effects [145–147].

The main advantage of these types of techniques which focus on electrokinetics is the possibility to
exploit several microbial parameters, such as size, shapes, and charges, which are very advantageous
to their separation and identification.

Electrical field-flow fractionation (EIFFF) is another technique that uses the ability of
microorganisms to migrate in an electric field. Its use for microbial identification was confirmed in
2000 [148]. It is based on the separation of sample components in a channel as a result of different
layers (fractionation) of each group of components under the influence of various electrical fields. The
EIFFF apparatus uses the two main walls of the channel to create a difference in the potential between
the electrodes which leads to a separation between charges [149].

3.5. Microfluidic Chips

Since its appearance in the early 1990s, the microfluidics field of research has seen great and
rapid developments [150]. It is a technique that combines separation and detection of sample
constituents by controlling the movement of fluids within microfluidic chips, without the need for
special sample preparation or reaction [151,152]. These platforms are small portable devices that
combine microchannels (with dimensions from tens to hundreds of micrometers), pressure systems,
and detection systems in the same piece.

Several reviews have been published over recent years about the plenitude of microfluidics
application [153–157], although, in light of this review, the development of microfluidics chips to detect
microorganisms are the most relevant [152,158–160]. Detection of pathogenic bacteria and viruses using
Chips is possible by recurring small sample volumes with great sensitivity, and it has huge applicability
in food safety control, environmental monitoring, and clinical diagnosis. Recent approaches for
microbial detection and identification are focusing on combinations of analytical standard techniques
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within microfluidics chips, without the need for labeling procedures. In particular, there are several
reports of combinations of microfluidics devices with PCR [161,162], MS approaches [163–165],
spectrometry [166], electrochemistry [154,167], among others.

FISH (fluorescence in situ hybridization) technique involves the use of phylogenetic dyes which
are fluorescent oligonucleotides whose base sequences are complementary to the ribosomal RNA
sequences (16S or 23S RNA in prokaryotes, or 18S or 28S RNAs in eukaryotes). These phylogenetic
dyes have the ability to penetrate into cells without promoting their lysis, and within the cell they are
able to form hybrids with the microbial ribosomal RNA. Given that the ribosomes are distributed
throughout the cell in prokaryotic organisms, the whole cell becomes fluorescent [168]. These dyes
are generally specific, reacting with only one species or a few related microbial species, as well they
produce more generally and react with, in some cases, all cells of a given phylogenetic group. It is
important to highlight that the use of this technique allows the identification and search of an organism,
or domain of interest, that is present in a natural sample [169]. FISH technology can also use various
phylogenetic probes. Thus, one can use a set of probes where each is designed to react with a particular
organism or group of organisms, where each contains its own fluorescent dye. With FISH it is possible
to determine the phylogenetic amplitude of a single habitat in a single experiment, and by associating
FISH with CLSM, it is possible to study microbial populations in greater detail and use it in biofilm
study [30]. Additionally, FISH technique can be used to measure the gene expression of the organisms
present in a natural sample. In this case, since the target corresponds to mRNA (less abundant than the
rRNA present in the ribosomes of a cell) standard FISH techniques cannot be applied, and instead the
target mRNA or fluorescence signal must be amplified [170].

4. Molecular Methods Used to Detect Bacteria

The advent of the “molecular biology age” has provided a plethora of tools and techniques for the
detection, identification, characterization, and typing of bacteria for a range of clinical and research
purposes [171]. Previously, the identification and characterization of bacterial species was largely
done by phenotypic and biochemical methods, which relied on preliminary isolation and culture.
While these methods continue to hold place in certain settings, molecular-based techniques have
provided unprecedented insights into bacterial identification and typing. To name a few examples,
genotypic methods have enabled the identification of a large diversity of previously unknown taxa, the
characterization of uncultivable bacteria, and facilitated metagenomics studies on large and diverse
bacterial communities [172]. Both clinical and research setting have provided in depth insights
into bacterial virulence, pathogenesis, antibiotic resistance, and epidemiological typing, as well as
identification of novel, emerging, and re-emerging species [173]. In addition, the widespread use
and availability of molecular tools for bacterial genotyping has resulted in high throughput analysis,
more sensitive and discriminatory results, and rapid turn-around-times, which are only likely to
get better with automated tools and data analysis pipelines. Most molecular methods for bacterial
identification are based on some variation of DNA analysis, either amplification or sequencing based.
These methods range from relatively simple DNA amplification-based approaches (PCR, real-time PCR,
RAPD-PCR) towards more complex methods based on restriction fragment analysis, targeted gene and
whole-genome sequencing, and mass spectrometry. In addition to this, approaches based on unique
protein signatures such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) and similar variations have also been explored [174]. While the advantages and
limitations of these approaches vary, the choice of the technology employed depends on several factors
including sample type (clinical or research, single-species or mixed-species), depth and accuracy of
results generated, resources and cost factors, as well as the turn-around-times expected. Given that
the present “molecular biology revolution” is resulting in a larger number of laboratories, including
small-scale and resource-limited setups, having access to genomic approaches, it is imperative to
understand the fundamental principles of these techniques, their applications, and their limitations.
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4.1. 16S rRNA PCR-Sequencing

The rapid amplification of nucleic acid targets from relatively lower starting material, makes
PCR one of the most sensitive techniques available for detection of bacterial targets. PCR-based
identification of bacterial DNA through amplification and sequencing of the 16S rRNA gene has
become a standard molecular method, both in the laboratory as well as in clinical settings. The 16S
rRNA gene is highly specific to each bacterial species and this makes it an ideal target for identification.
The standard method involves PCR amplification of the 16S rRNA gene, followed by sequencing
and comparison to known databases for identification. PCR-based methods are not only faster than
conventional culture-based methods but are also helpful in identification of bacteria that are difficult to
grow in laboratory conditions. In one study, universal primers for the 16S rRNA gene were designed to
identify bacteria in the root canals of patients with necrotic pulp tissue [175]. The primers included ten
putative bacterial pathogens commonly found in root canals with necrotic pulp. After DNA extraction
from the necrotic pulp, a PCR was run using universal primers, as well as species specific primers, and
the products were analyzed using gel electrophoresis. Twenty-two of the 24 specimens tested positive
with the universal bacterial primers. As expected, certain bacterial species such as Fusobacterium spp.,
Peptostreptococcus spp. and Streptococcus spp. were commonly identified. Of these, PCR analysis
revealed two samples that showed a product with the universal primers, but not with any of the
10 species-specific primer sets tested. Sequencing of these PCR products revealed the presence of
a close relative of the Olsenella genus, previously not associated with such infections. Though the
16S rRNA gene has emerged as a popular target for PCR-based identification, in cases where the
16S rRNA gene is identical in two closely related species, other conserved genes, such as rpoB, tuf,
gyrA, gyrB, and heat shock proteins are used as targets [176–178]. In research laboratories, PCR-based
identification is a straightforward procedure with reliable results. However, when applied to clinical
settings, various factors come into play that can influence PCR results. Clinical samples often have
very few bacteria to begin with, they also require various preprocessing steps before the PCR is carried
out, to remove PCR inhibitors and enable extraction of maximum bacteria from the sample without
contamination [179,180]. Despite these concerns, PCR-based identification has been successfully and
widely employed to detect and identify bacteria in clinical samples [181–183].

4.2. Real-Time PCR

Real-time PCR (RT-PCR) provides many advantages over conventional PCR, such as higher
sensitivity and accuracy and the ability to monitor DNA amplification in real-time through fluorescence
intensity, thereby negating the need for any post-PCR detection techniques. RT-PCR can also be
quantitative or semi-quantitative, using the Cq value (cycle number at which fluorescence intensity
rises above the detectable level) to quantify the amount of DNA. As with conventional PCR, RT-PCR
also has wide applications within research laboratories as well as in the clinic. It is also applied
to numerous kinds of samples, right from identification of bacteria in milk, which are otherwise
non-culturable [184], to the identification of bacteria within soil ecosystems [185]. Using universal
primers that target conserved regions of 16S rRNA gene, an assay has been developed that can detect
Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa [186]. The
primers were designed based on the alignment sequence of 962,279 bacterial 16S rRNA gene sequences,
which revealed two regions that were highly conserved in more than 90% of all rRNA gene sequences.
The primers were able to successfully detect less than 100 genomic DNA copies. This real-time based
16S rRNA PCR has also been used to identify or quantify bacterial loads in clinical infections such
as chronic wound tissue [187] and gastrointestinal mucosal biopsies [188], and has also been applied
in forensic investigations of saliva specimens [189]. In addition, high resolution melting (HRM) is a
rapid, reliable, accurate, and cost-effective emerging tool for genotyping bacteria, such as from the
Lactobacillus casei group and both Gram-positive and Gram-negative bacterial pathogens [190,191].
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4.3. Random Amplification of Polymorphic DNA–RAPD-PCR

Unlike previously described PCR-based methods, random amplification of polymorphic DNA
(RAPD)-PCR employs short primers (8–12 nucleotides long) with arbitrary sequences that bind
nonspecifically to template bacterial DNA. This results in amplification of random, repetitive regions
of template DNA, thereby providing a unique profile for bacterial identification [192]. RAPD-PCR
reactions can start from isolated DNA or crude bacterial lysates, which are then subject to amplification in
the presence of a RAPD primer (or set of primers) and low levels of magnesium (to enhance non-specific
annealing) [193]. Amplified products are then subjected to standard agarose gel electrophoresis to
generate unique RAPD fingerprints. RAPD-PCR requires no prior knowledge of the target genome
sequence, as the primers are designed to bind randomly to the template DNA. This means it can be
used to identify and type a diverse range of bacterial species that have either not been identified or
for which no prior sequence data is available. Furthermore, it can be performed from whole bacteria
directly, without the need for DNA isolation, and can be applied on Gram-positive and Gram-negative
species [193]. In India, 20 alkaline protease producing bacterial strains isolated from soil samples from
various geographic regions were subjected to RAPD screening with a set of random primers [194].
Analysis of the amplification pattern enabled the classification of isolates into distinct groups based on
alkaline protease production. This underscores that RAPD typing using universal random primers are
a viable alternative to gene specific molecular marker identification, especially when analyzing a large
number of samples of diverse species and without any prior genetic information. Lastly, RAPD-PCR
has also been used as a tool to identify the genetic variability of microorganisms [195–197].

4.4. Restriction Fragment Length Polymorphism–RFLP

Restriction fragment length polymorphism (RFLP) is a method for identifying bacterial strains
using unique fingerprints which relies on the presence of variations (polymorphisms) in homologous
DNA sequences. This PCR-based method employs restriction enzymes, which can recognize and cut
amplified DNA (PCR product) into DNA fragments of different lengths. As in RAPD, these different
fragments are separated by agarose gel electrophoresis to generate a unique pattern of bands for each
bacterial strain. If two strains are closely related, their banding patterns will be identical or very similar.
On the other hand, differences in banding patterns indicate bacterial strain diversity. As evident,
this technique is highly relevant in investigating the molecular epidemiology of infectious outbreaks,
where it is important to establish whether multiple cases or patients belong to the same outbreak, to
track the source of the outbreak, and to determine single or multiple bacterial strains involved in the
outbreak. In a suspected nosocomial outbreak of methicillin-resistant Staphylococcus aureus (MRSA),
PCR-RFLP identified three novel MRSA isolates based on new RFLP patterns. Further, in a smaller
group of patients, the highly discriminatory nature of PCR-RFLP analysis was able to correctly identify
differences in a cluster of MRSA strains, thereby ruling out the possibility of an outbreak [198].

4.5. Amplified Fragment Length Polymorphism–AFLP

Amplified fragment length polymorphism (AFLP) is similar to RFLP, in that it employs restriction
enzymes (usually a pair) to fragment genomic DNA, but then amplifies a subset of restriction fragments
using ligated adaptors. This amplification is achieved by using primers that are complementary to
the adaptor sequences but also have certain unique nucleotides. Therefore, only a small number
of restriction fragments are selectively amplified. AFLP fingerprints are then analyzed using gel
electrophoresis, yielding a set of distinct DNA fragments from a single bacterial genomic DNA.
As evident, AFLP offers high specificity and discriminatory potential in the absence of any prior
genome sequence knowledge. The advantages of AFLP as a DNA fingerprinting tool were leveraged
in an outbreak investigation of Pseudomonas aeruginosa in an intensive care unit [199]. During a period
of one year, 23 P. aeruginosa strains from infected ICU patients were isolated and characterized by AFLP.
Following restriction digestion, AFLP PCR was performed using fluorescently labeled PCR primers.
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Fluorescent amplified PCR fragments were separated by gel electrophoresis and analyzed. Based
on the AFLP results, an outbreak cluster was identified with more than 90% similarity. Notably, this
outbreak strain was also isolated from the wash basin, water tap, and connection pieces from suction
tubes, pointing to the possible source of the outbreak [199]. Complete elimination of the outbreak was
achieved after sterilization of the ICU equipment.

4.6. Pulsed-Field Gel Electrophoresis–PFGE

Pulsed-field gel electrophoresis (PFGE) is a method of separating large fragments of DNA and is
particularly useful for characterizing and typing bacteria for epidemiological studies. In PFGE, pure
bacterial strains in agarose plugs are treated with enzymes and detergents (proteases and SDS) that
release chromosomal DNA. The agarose plugs are then incubated with restriction enzymes, which
cut at specific sites to generate a limited number of DNA fragments. The plugs are then subjected to
electric current and alternate rotations in a magnetic field (which enhances the movement of large
DNA fragments), leading to the size separation of DNA fragments and emergence of a banding
pattern [200]. In an outbreak investigation of cholera over seven years, fifty isolates of Vibrio cholerae
were subject to molecular typing by PFGE [201]. Analysis revealed that over the years, the outbreak
involved 15 different pulsotypes of V. cholerae, four pulsotypes matched published pulsotypes and
there were 11 new types. Notably, PFGE typing revealed the chronological emergence of new types,
which subsequently replaced the earlier pulsotype.

4.7. Ribotyping

Ribotyping is a method for bacterial identification and characterization that, unlike certain
previously described molecular typing methods, employs rRNA based phylogenetic analysis. Given
that that rRNA genes (such as 16S rRNA) are highly conserved within a bacterial species, identifying
16S rRNA gene polymorphisms is a reflection of the evolutionary lineage of the bacterial species, and
can shed light on bacterial classification, taxonomy, epidemiological investigation, and population
biology [202]. Ribotyping typically involves a multi-step process starting with restriction enzymes
that target the genomic sequence of interest, followed by southern blot transfer and hybridization
with probes, and analysis of ribotype RFLP bands. However, with advances in molecular tools and
knowledge of genomic sequences, several modifications to this technique have been published [202].
It is important to note that for the purpose of primer and probe design, ribotyping requires some
prior knowledge of the genome sequence under study. In one study, PCR-ribotyping was employed
to characterize 99 strains of Clostridium difficile isolated from patients with nosocomial diarrhea.
Following DNA extraction and PCR amplification of select regions of the 16S rRNA and 23S rRNA
genes, amplified products were fractionated by electrophoresis [203]. The banding pattern revealed
41 different PCR-ribotypes with high reproducibility and discriminatory power. In a modification of
this method, PCR-ribotyping was directly employed on stool samples for detection and typing of C.
difficile strains [204]. Primer modifications targeting both, the 16S-23S rRNA intergenic spacer region
and 16S and 23S genes itself, resulted in increased specificity for direct typing. With these new primers,
PCR-ribotype could be detected directly from stool samples in 86 out of 99 cases, with a high degree of
concordance with PCR-ribotyping done from isolated colonies.

4.8. Whole-Genome Sequencing–WGS

Whole-genome sequencing (WGS) has recently become a highly accessible and affordable tool
for bacterial genotyping. Analysis of the entire bacterial genome not only provides unprecedented
insights into bacterial typing and evolutionary lineages but has also revolutionized our approach to
understanding antimicrobial resistance and outbreak investigations. Advances in WGS technologies
and analysis pipelines have rapidly increased output and analysis speed, while reducing overall
costs [205]. In spite of reservations from clinicians related to experimental protocols and cost factors,
WGS-based approaches are being evaluated for the pathogen identification and antimicrobial resistance
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typing. In one study, WGS was used to investigate a fatal outbreak of vancomycin resistant Enterococcus
faecium (VRE) involving three patients in an ICU [206]. Using an Illumina Miseq benchtop sequencer,
WGS established that isolates from patient two and three differed from that of patient one only by a
single, non-synonymous polymorphism, each pointing to ICU transmission. In addition, the distinct
SNPs in isolates from patient two and three also indicated two separate direct transmission events
from patient one, rather than linear transmission from patient one to patient two to patient three.
As expected, the isolates were shown to carry genes (vanA) conferring resistance to vancomycin.
Therefore, the in-depth analysis offered by WGS was not only able to establish antibiotic resistance but
could also infer transmission dynamics and evolutionary lineage of the outbreak strains.

4.9. MALDI-TOF-MS in Bacteria

In addition to advancements in genomics, proteomics-based approaches for bacterial identification
and characterization have emerged. These methods are primarily based on mass spectrometry,
which enables rapid and high-throughput analysis of biomolecular signatures produced by a bacterial
strain [174]. In MALDI-TOF MS, the spectra patterns produced from bacterial cells contain characteristic
information to identify and characterize bacterial species. For this, the bacterial sample to be analyzed is
mixed with organic matrices and ionized by a laser beam. As the resulting ions move towards the mass
analyzer, the mass:charge ratio is obtained which creates a spectra pattern. This pattern is then compared
with a known library of fingerprints. In a sophisticated work, Edwards-Jones and colleagues [207]
developed a MALDI-TOF-MS based method to discriminate between methicillin-sensitive and
methicillin-resistant S. aureus. Based on the distinct spectral patterns obtained, MSSA and MRSA could
be rapidly differentiated, and this was determined to be highly reproducible. This not only underscores
the relevance of mass spectrometry-based approaches for bacterial identification and typing, but also
indicates that it could assist with clinical decisions such as the initiation of appropriate antibiotics for
the treatment of S. aureus infections.

5. Molecular Methods Used to Detect Yeasts

Rapid and precise identification of pathogens from clinical specimens leads to appropriate
therapeutic plans [208], but the growing diversity of infectious species and strains makes the
identification of clinical yeasts increasingly difficult [209]. Still, novel identified fungal species
can differ in virulence and drug resistance. Culture-based identification methods have been the gold
standard for the diagnosis of fungal infection [210], but these classical phenotypic and biochemical
assays are time consuming and are not suitable to accurately distinguish all the species belonging to a
specific cryptic complex [211]. Therefore, several molecular biology approaches have gained great
potential, as they can be applied to detect the pathogen directly without prior cultivation to identify
species and subspecies [212] and they go further than biotype or serotype [213].

In fact, these methods range from simple PCR methods to more sophisticated quantitative RT-PCR
and/or matrix-assisted laser desorption time-of-flight mass spectrophotometry (MALDI-TOF MS) [211].
Molecular methods are based on the detection of the nucleic acid sequence of a gene specific to an
organism, and therefore they do not detect viable organisms, only indicate their presence [214]. The
principle of the probe-based identification is to obtain a double-strand hybrid as a result of binding
the single stranded DNA or RNA of the organism to a complementary sequence. For molecular
detection of fungal pathogens, PCR is the most preferred method [215,216] and is regarded as a
standard platform in many clinical laboratories, even in developing countries, due to its affordability
and reproducibility [217,218]. RT-PCR assays with a short turnaround time can provide desirable
alternatives for the rapid detection of microbes [210,219], and they are able to quantify the amount
of amplified DNA in real time. Hence, conventional PCR methods have been replaced by RT-PCR
techniques in medical laboratories [216]. DNA fingerprinting methods have evolved as major tools
for identification in fungal epidemiology. However, it must be emphasized that no single method
has emerged as the method of choice, and some methods perform better than others at different
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levels of resolution [220]. DNA polymorphisms of medically relevant fungi can be detected by the
analysis of RFLP, and southern hybridization with appropriate DNA probes, DNA RAPD, other
PCR-based methods, electrophoretic karyotyping by pulsed field gel electrophoresis (PFGE), and
sequencing-based methods [212,220]. The number of laboratories now using the relevant molecular
testing is rapidly increasing, resulting in an obvious need for standardization. The application of
the appropriate technique depends on factors such as financial budget, experienced personnel, and
equipment but an important issue is still the lack of sufficient species-specific primers [214].

5.1. PCR

Aforementioned PCR-based detection of fungal DNA sequences can be sensitive, rapid,
specific [212,221,222] and it permits both intraspecies differentiation and species identification of
yeast isolates [223]. A relevant step for PCR performance is the DNA extraction, which should be
universal, which originates pure and high-quality DNA [224]. Because fungal cell walls are strong and
difficult to disrupt, DNA isolation requires effort to overcome this barrier. Hence, glass beads are used
for mechanical disruption, sonication, and phenol-chloroform in order to promote enzymatic digestion
in the lysis phase [216,225]. As previously indicated, PCR tests, as well as detection of specimen type
(whole blood, serum, and plasma), should be standardized. The choice of primers is another important
factor that could alter the diagnostic performance of PCR tests. On the other hand, multiplex PCR can
detect a wide variety of fungi at once in the same sample [216]. The 18S, 5.8S, and 28S nuclear rRNA
genes are coding regions with slow evolution and are relatively conserved among fungi. Because of
these properties they provide establishment of phylogenetic relationships [222,226]. More rapidly
evolved regions are internal transcribed spacer 1 and 2 (ITS1 and ITS2, respectively) and thus they may
vary among various species within a genus. ITS region DNA sequences with sufficient polymorphism
may be amplified in PCR and serve for fungal identification [222].

The abovementioned conserved sequence of 18S-rRNA was used for primer design with the
goal of detecting 25 fungal species, including Candida spp., Hansenula spp., Saccharomyces cerevisiae,
Cryptococcus neoformans, Trichosporon beigelii, Malassezia furfur, Pneumocystis carinii, Aspergillus spp., and
Penicillium spp. A 687-bp product was amplified successfully by PCR from all 78 strains and specificity
was subsequently confirmed by Southern analysis [221]. Stepwise “YEAST PANEL multiplex PCR
assays” targeting 21 yeast species of Candida spp., Trichosporon spp., Rhodotorula spp., Cryptococcus
spp., and Geotrichum spp. was designed as a faster and accurate diagnostic strategy. Primers were
designed to not cross-react with the other species, AND compatibility of amplicon sizes of one target
species with the rest of target species in the same multiplex PCR was required as well as melting
temperature compatibility of primers within the same multiplex PCR. Another two criteria for primer
selection were the location of primers in the most stable segment of the target loci, and in order to
prevent cross-reactivity with nontarget species, the gaps, and mismatches (positioned in the 3′ end
of primers). In this work, the results obtained from the YEAST PANEL multiplex PCR assay (with
804 clinical species) were 100% consistent with those of MALDI-TOF MS [218]. A multiplex PCR
strategy, which allowed the identification of eight clinically relevant yeasts of the Candida genus,
namely Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, Candida
guilliermondii, Candida lusitaniae, and Candida dubliniensis, was focused on the amplification of fragments
from ITS1 and ITS2 regions by the combination of two yeast-specific and eight species-specific primers
(EMBL/GenBank database) in a single PCR reaction [227]. Another one-step, multiplex PCR to detect
and identify Candida spp. in clinical settings was developed with primers targeting Hyphal Wall Protein
I gene for the C. albicans, C. dubliniensis, Candida africana, Intergenic Spacer for the C. glabrata, Candida
nivariensis, Candida bracarensis, and Intein and ITS rDNA for the C. parapsilosis, Candida orthopsilosis,
and Candida metapsilosis. No cross-reaction with closely- and distantly-related yeast species, Aspergillus
spp., and human DNA was observed, resulting in 100% specificity [218].
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5.2. Quantitative Real Time-PCR

RT-PCR assay is an important tool for rapid detection of pathogens, and it offers superior accuracy
and specificity over traditional methods. In a study, real-time amplification of two genes, melting-point
analysis and two-dimensional plotting of T(m) data were used as a broad-range method for the
identification of clinical isolates of Candida spp. and Cryptococcus spp. Two primer sets (18S-1F/5.8S-1R
and 18S-2F/5.8S-1R) for amplifying ITS-1, one primer set (5.8S-1F/28S-1R) for amplifying ITS-2, and
one primer set (28S-2F/28S-2R) for amplifying a variable segment of the 28S ribosomal gene were
designed [228]. Conserved sequences DNA in Candida spp., however different from Aspergillus spp.
and Penicillium spp., were identified. [210]. Further, species-specific real-time PCR primer sets covering
C. albicans, C. glabrata, C. tropicalis, and C. dubliniensis were selected and they showed high sensitivity
and specificity. They could be potentially assembled into a single PCR array for the rapid detection of
Candida spp. in various clinical settings [210]. The same regions of the rDNA gene complex, the highly
polymorphic ITS1 and ITS2, were amplified by another group using primers targeting conserved
regions of the 18S, 5.8S, and 28S genes to identify fungal pathogens [228]. In another study, real-time
PCR assay demonstrated to rapidly detect, identify, and quantify Candida spp. from blood culture
samples [229]. The assay was performed with primers and probes specific for the 18S rRNA of Candida
spp. A total of 50 strains, of C. parapsilosis, C. glabrata, C. albicans, and C. tropicalis were distinguished
and the results were entirely in accordance with the sequencing and conventional methods [229]. In
another approach, the inspection of the viability of a high-resolution melting curve analysis (HRMA) of
regions ITS1 and ITS2 for the distinction of C. albicans, C. glabrata, C. parapsilosis, C. krusei, C. tropicalis,
C. guilliermondii, C. dubliniensis, and Candida lusitaniae was considered. HRMA was verified in order to
categorize C. albicans strains into four genotypes (A, B, C, and D) using a primer set that limits the
transposable intron region of the 25S of rDNA. RT-PCR and HRMA produced clear melting curve
shapes, according to sequencing and gel electrophoresis study, very reproducible, and typical of
each Candida spp. and C. albicans genotypes [230]. Furthermore, Asadzadeh et al. [231] developed a
duplex RT-PCR assay for rapid detection and differentiation between C. albicans and C. dubliniensis
by using two species-specific primer pairs and SYBR® Green dye to differentiate C. albicans and
C. dubliniensis isolates via melting curve analysis of RT-PCR amplicons. The amplification products
were also analyzed by agarose gel electrophoresis to confirm RT-PCR results. Melting temperature
(Tm) for reference strains of C. albicans and C. dubliniensis were 86.55 ◦C and 82.75 ◦C, respectively [231].
Similarly, quantitative PCR assays to determine the relative Paracoccidioides brasiliensis load in lungs
from infected mice were also developed. SYBR® Green- and TaqMan-based assays using primers and
probe for the 43-kDa glycoprotein (gp43) gene were able to detect as little as 270 gene copies (about 2
fg of DNA) per reaction. Although qPCR assays cannot distinguish between living and dead yeasts,
it found a highly positive linear correlation between CFU and qPCR [219]. PCR and RT-PCR assays
were also used to 100% identify 44 C. auris and related species, such as Candida duobushaemulonii,
C. haemulonii, and C. lusitaniae with strong results [232]. Comparable scores were acquired when
real-time PCR was applied as an amplicon with a Tm [232]. In another report, the RT-PCR also quickly
revealed C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results,
showing the presence of dead or culture-impaired C. auris [233].

5.3. DNA Fingerprinting Methods

5.3.1. Pulsed Field Gel Electrophoresis (PFGE)

Electrophoretic karyotyping methods, which are based on differences in the genetic structure of an
isolate, reveal sufficient variation for strain delineation [234]. Pulsed field gel electrophoresis (PFGE)
enables separation of fungal chromosomal DNAs according to their size (up to several megabases) in
agarose gels, and it is a worthwhile tool for fungal karyotyping [234,235]. Its application allows for
species or even strain specific profiles to be obtained. For example, the chromosomal DNAs of eight
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Candida spp. were analyzed by PFGE under various conditions. The matching bands in the gels were
appointed by DNA probe which hybridized to DNA of all the species (rDNA, TUB2, PEP4) [235].

5.3.2. Restriction Fragment Length Polymorphisms (RFLP)

Delineating strains of C. albicans based on variations in DNA structure can be performed by RFLP.
Concisely, DNA extracted from isolates is split into fragments by specific DNA restriction enzymes,
and the fragments are divided based on molecular size by gel electrophoresis. To spot alterations or
matches in the fragments a staining of the gel with ethidium bromide with visualization under UV
light or DNA hybridization with a specific DNA probe is done [234]. Size and restriction scrutiny of
PCR-amplified ITS2 region DNA is a fast and consistent routine to identify clinical yeasts. Presently,
there is a validated database with over 400 clinical isolates (ITS2 length and sequence polymorphisms)
for 34 yeast different species [222]. In another study, Candida spp. isolates (80 clinical isolates and
three standard strains) from cancer patients were identified using other PCR-restriction enzymes, MspI
and BlnI [236]. Alternatively, ITS-rDNA region (ITS1-5.8SrDNA-ITS2) was amplified by PCR using
universal primers and the products were digested with MspI for identification of 360 clinical yeast
strains from nail infection. Specifically, for the C. parapsilosis complex, the SADH gene was amplified,
with a digestion done using the Nla III restriction enzyme. C. albicans, C. parapsilosis, C. tropicalis, C. kefyr,
C. krusei, C. orthopsilosis, C. glabrata, C. guilliermondii, C. rugosa, and C. lusitaniae were identified [208].
The same method (RFLP based on Msp I and Bln I restrictive enzyme cuts PCR products after the
amplification of ITS1 and ITS2 regions of rDNA genotypically) was used and results were compared
with phenotypic species assessment using an automated Vitek® 2 system. A great difference was
found between these two methods. It may be argued that Msp I and Bln I restriction enzyme fragments
can be used in the identification of medically important Candida spp. Further studies are needed
to develop this kind of restriction profile to be used in the identification of candidal strains [237].
Restriction enzyme analysis of C. albicans and non-Candida albicans Candida spp. previously identified
by conventional methods was done to evaluate the utility of restriction enzyme analysis for more rapid
and reliable identification of 146 Candida spp. strains (MwoI for the totally of the species, and BslI for
C. parapsilosis and C. tropicalis strains). The restriction digestion with MwoI was able to distinguish
between five different species (C. albicans, C. krusei, C. guilliermondii, C. kefyr, and C. glabrata), while BslI
digestion could distinguish between C. tropicalis and C. parapsilosis [238]. Another study summarized
that phenotypic and molecular methods (PCR-RFLP) resulted in the identification of 65.2% and 96.6%
of 204 Candida spp. isolates, respectively [239].

5.3.3. Fragment Length Polymorphisms (RFLP)

Mitochondrial DNA (mtDNA) can also be useful to distinguish closely related strains in hospital
acquired infection outbreaks since, as compared to nuclear DNA, its higher mutational load and
evolutionary rate readily reveals microvariants [240]. Restriction endonuclease analysis of mtDNAs
from 19 isolates representing seven Candida spp. and Lodderomyces elongisporus showed altered cleavage
outlines that emerged to be specific for the species. Rare shared restriction fragments were clear
and there was no correspondence among the base compositions of nuclear and mitochondrial DNAs.
C. parapsilosis and L. elongisporus had similar mtDNA molecular sizes (30.2 and 28.8 kilobase pairs),
however, the restriction endonuclease patterns of these organisms were distinct [241]. In another study,
three intergenic regions located among the genes tRNAGly/COX1, NAD3/COB and ssurRNA/NAD4L,
named IG1, IG2, and IG3, respectively, which showed a high number of neutral substitutions, were
amplified and sequenced from 18 clinical isolates of the C. albicans strains, and phylogenies revealed
three groups. Unbiased evolution, great variability, easy PCR isolation, and full length sequencing
regions can lead to a novel outlook in molecular findings of C. albicans isolates, supplementing
multilocus sequence typing techniques (MLST, [240]).
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5.3.4. Random Amplified Polymorphic DNA (RAPD)

RAPD markers are DNA fragments from PCR amplification of random segments of genomic
DNA with single primer of an indiscriminate nucleotide sequence. RAPD or restriction enzyme
analysis (REA) are valuable to establish the source of an outbreak, nonetheless, further reproducible
and discriminatory procedures may be a requisite (e.g., Southern hybridization, PFGE). Multiple
Candida strains from nosocomial infections have been identified [242]. By using OPE-18, OPE-04, and
OPA-18, RAPD enabled a direct association of the most frequent Candida spp.(characteristic molecular
fingerprint). In addition, the differentiation between C. albicans and C. dubliniensis and its strains
were correctly performed by a PCR established on multiple secreted aspartic proteinase (SAP) and
dipeptidyl aminopeptidase (DAP2) genes [243]. Moreover, genetic profiles of 39 clinical isolates of C.
albicans were assessed by means of RAPD and microsatellite, with two different primers for each system.
The identification of yeasts was set by nested-PCR which involved two amplification stages. RAPD
afforded diverse profiles for both primers M2 and P4. Using CDC3 and HIS3 markers, microsatellite
endorsed the observation of six and seven unlike alleles, respectively [244].

5.3.5. Amplified Fragment Length Polymorphism (AFLP)

In this methodology, the genomic DNA is digested with two restriction enzymes (e.g., EcoRI
and MseI) and double-stranded oligonucleotide adapters are linked to the fragments, which work as
targets for the primers (labeled with a fluorescent dye ) during PCR amplification, separated, and
scrutinized using a software [245]. In a collection of 395 clinical isolates catalogued as C. parapsilosis,
20 C. metapsilosis strains were identified by AFLP (polymorphic bands) [246]. About 104 C. auris
isolates from India, South Africa, and Brazil were analyzed using MLST, AFLP fingerprinting, and
MALDI-TOF MS (EcoRI and MseI restriction enzymes and complementary adaptors) [247]. Both MLST
and AFLP typing clearly defined two major clusters covering isolates from India and Brazil [247].
All previously described molecular techniques can be applied for detection of new fungal species
as well as for routine laboratory identification. For example, Candida milleri and Candida humilis
are the most characteristic yeasts found in type I sourdough ecosystems. Genetic characterization,
assimilation test of carbohydrates, and metabolome assessment by FTIR analysis exposed a high degree
of intraspecific polymorphism and 12 distinctive genotypes were categorized [248]. Several methods
were shown to be useful to determine isogenicity among C. albicans isolates obtained from the same
patient: PFGE separation of chromosomes; RFLP of chromosomal DNA; and finally, Southern blot
analysis [249]. C. auris isolates, identified by ITS rDNA sequencing demonstrated to be extremely
resistant to fluconazole and resistant to voriconazole, stressing the importance of precisely identifying
C. auris to avoid therapeutic failures [250].

6. Conclusions

The tools for the determining the identity of a microbial sample have been emerging in
the last decades. Although having limitations, culture and microscopy are still two of the most
utilized techniques. PCR and other genetic approaches are particularly important for nonculturable
microorganisms and MS has been shown to be useful, quick, and easy for the identification of microbial
samples and detection of microbial threats. However, it is reserved for pure isolates and cannot be used
for complex samples, since they may promote interference in the background. This may be simplified
through the use of chromatography-based methods (e.g., HPLC, LC-MS).

In the future, development of the detection limits for microorganisms will continue to be a key
assignment in clinical microbiology. The combination of these (and possibly others) methodologies
and instrumentation will surely improve the skills for the detection of pathogens.
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