11,348 research outputs found

    Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state

    Full text link
    We derive a relationship between the optical conductivity scattering rate 1/\tau(\omega) and the electron-boson spectral function \alpha^2F(\Omega) valid for the case when the electronic density of states, N(\epsilon), cannot be taken as constant in the vicinity of the Fermi level. This relationship turned out to be useful for analyzing the experimental data in the pseudogap state of cuprate superconductors.Comment: 8 pages, RevTeX4, 1 EPS figure; final version published in PR

    Implications of surface noise for the motional coherence of trapped ions

    Full text link
    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a new constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50~μ\mum above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both, the observed heating as well as the measured dephasing, satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.Comment: (5 pages, 4 figures

    Infinite-Randomness Fixed Points for Chains of Non-Abelian Quasiparticles

    Full text link
    One-dimensional chains of non-Abelian quasiparticles described by SU(2)kSU(2)_k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to kk \to \infty). For k=2k=2 this phase provides a random singlet description of the infinite randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size LL in these phases scales as SLlnd3log2LS_L \simeq \frac{\ln d}{3} \log_2 L for large LL, where dd is the quantum dimension of the particles.Comment: 4 pages, 4 figure

    Event Reconstruction for a DIRC

    Get PDF
    Monte Carlo simulations were made for a possible DIRC at the WASA detector at COSY. A statistical method for pattern recognition is presented and the possible angle resolution and velocity precision achieved are discussed.Comment: Minor changes in text. Figures updated. accepted by JINS

    Relationship between hippocampal structure and memory function in elderly humans

    Get PDF
    With progressing age, the ability to recollect personal events declines, whereas familiarity-based memory remains relatively intact. It has been hypothesized that age-related hippocampal atrophy may contribute to this pattern because of its critical role for recollection in younger humans and after acute injury. Here, we show that hippocampal volume loss in healthy older persons correlates with gray matter loss (estimated with voxel-based morphometry) of the entire limbic system and shows no correlation with an electrophysiological (event-related potential [ERP]) index of recollection. Instead, it covaries with more substantial and less specific electrophysiological changes of stimulus processing. Age-related changes in another complementary structural measure, hippocampal diffusion, on the other hand, seemed to be more regionally selective and showed the expected correlation with the ERP index of recollection. Thus, hippocampal atrophy in older persons accompanies limbic atrophy, and its functional impact on memory is more fundamental than merely affecting recollection
    corecore