10,521 research outputs found

    Single-dish high sensitivity determination of solar limb emission at 22 and 44 GHz

    Get PDF
    A large number of solar maps were obtained with the use of Itapetinga 45 ft antenna at 22 GHz and 44 GHz. A statistical study of these maps, reduced using original techniques, permitted the establishment of the solar radius with great accuracy at the two frequencies. It is found that 22 GHz and 44 BHz radiation originates at 16,00 km and 12,500 km above the photosphere, respectively. Excess emission due to active regions was clearly identified at lower solar latitudes above and below the equator, extending up to 26,000 km and 16,500 km above the photosphere, at 22 GHs and 44 GHz, respectively

    Short-lived solar burst spectral component at f approximately 100 GHz

    Get PDF
    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays

    The possible importance of synchrotron/inverse Compton losses to explain fast mm-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    Multiple energetic injections in a strong spike-like solar burst

    Get PDF
    An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structure were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30x60ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed

    The possible importance of synchrotron/inverse Compton losses to explain fast MM-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984 presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency or approx. 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and or approx. 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-rays power law indices have been found. A synchrotron/inverse Compton model has been applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    Comparison of eigenvalues for a fourth-order four-point boundary value problem

    Get PDF
    We establish the existence of a smallest eigenvalue for the fourth-order four-point boundary value problem (ϕp(u′′(t)))′′=λh(t)u(t), u′(0)=0, β0u(η0)=u(1), ϕp′(u′′(0))=0, β1ϕp(u′′(η1))=ϕp(u′′(1))\left (\phi_p(u''(t)) \right )'' = \lambda h(t) u(t), \, u'(0) = 0, \, \beta_0 u(\eta_0) = u(1), \, \phi_p'(u''(0)) = 0, \, \beta_1\phi_p(u''(\eta_1)) = \phi_p(u''(1)), p>2p > 2, 0<η1,η0<1,0<β1,β0<10 < \eta_1,\eta_0 < 1, 0 < \beta_1, \beta_0 < 1, using the theory of u0_0-positive operators with respect to a cone in a Banach space. We then obtain a comparison theorem for the smallest positive eigenvalues, λ1\lambda_1 and λ2\lambda_2, for the differential equations (ϕp(u′′(t)))′′=λ1f(t)u(t)\left ( \phi_p(u''(t)) \right )'' = \lambda_1 f(t) u(t) and (ϕp(u′′(t)))′′=λ2g(t)u(t)\left ( \phi_p(u''(t)) \right )'' =\lambda_2 g(t) u(t) where 0≤f(t)≤g(t),t∈[0,1]0 \leq f(t) \leq g(t), t \in [0,1]

    A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    Get PDF
    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses
    • …
    corecore