180 research outputs found

    Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection

    Get PDF
    Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB

    Association of war zone–related stress with alterations in limbic gray matter microstructure

    Get PDF
    IMPORTANCE: Military service members returning from theaters of war are at increased risk for mental illness, but despite high prevalence and substantial individual and societal burden, the underlying pathomechanisms remain largely unknown. Exposure to high levels of emotional stress in theaters of war and mild traumatic brain injury (mTBI) are presumed factors associated with risk for the development of mental disorders. OBJECTIVE: To investigate (1) whether war zone–related stress is associated with microstructural alterations in limbic gray matter (GM) independent of mental disorders common in this population, (2) whether associations between war zone–related stress and limbic GM microstructure are modulated by a history of mTBI, and (3) whether alterations in limbic GM microstructure are associated with neuropsychological functioning. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study, which took place in 2010 to 2014 at the Veterans Affair Rehabilitation Research and Development TBI National Network Research Center. Participants included male veterans (aged 18-65 years) with available diffusion tensor imaging data enrolled in the TRACTS study. Data analysis was performed between December 2017 to September 2021. EXPOSURES: The Deployment Risk and Resilience Inventory (DRRI) was used to measure exposure to war zone–related stress. The Boston Assessment of TBI-Lifetime was used to assess history of mTBI. Stroop Inhibition (Stroop-IN) and Inhibition/Switching (Stroop-IS) Total Error Scaled Scores were used to assess executive or attentional control functions. MAIN OUTCOMES AND MEASURES: Diffusion characteristics (fractional anisotropy of tissue [FA(T)]) of 16 limbic and paralimbic GM regions and measures of functional outcome. RESULTS: Among 384 male veterans recruited, 168 (mean [SD] age, 31.4 [7.4] years) were analyzed. Greater war zone–related stress was associated with lower FA(T) in the cingulate (DRRI-combat left: P = .002, partial r = −0.289; DRRI-combat right: P = .02, partial r = −0.216; DRRI-aftermath left: P = .004, partial r = −0.281; DRRI-aftermath right: P = .02, partial r = −0.219), orbitofrontal (DRRI-combat left medial orbitofrontal cortex: P = .02, partial r = −0.222; DRRI-combat right medial orbitofrontal cortex: P = .005, partial r = −0.256; DRRI-aftermath left medial orbitofrontal cortex: P = .02, partial r = −0.214; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial r = −0.260; DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = −0.196), and parahippocampal (DRRI-aftermath right: P = .03, partial r = −0.191) gyrus, as well as with higher FA(T) in the amygdala-hippocampus complex (DRRI-combat: P = .005, partial r = 0.254; DRRI-aftermath: P = .02, partial r = 0.223). Lower FA(T) in the cingulate-orbitofrontal gyri was associated with impaired response inhibition (Stroop-IS left cingulate: P < .001, partial r = −0.440; Stroop-IS right cingulate: P < .001, partial r = −0.372; Stroop-IS left medial orbitofrontal cortex: P < .001, partial r = −0.304; Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = −0.340; Stroop-IN left cingulate: P < .001, partial r = −0.421; Stroop-IN right cingulate: P < .001, partial r = −0.300; Stroop-IN left medial orbitofrontal cortex: P = .01, partial r = −0.223; Stroop-IN right medial orbitofrontal cortex: P < .001, partial r = −0.343), whereas higher FA(T) in the mesial temporal regions was associated with improved short-term memory and processing speed (left amygdala-hippocampus complex: P < .001, partial r = −0.574; right amygdala-hippocampus complex: P < .001, partial r = 0.645; short-term memory left amygdala-hippocampus complex: P < .001, partial r = 0.570; short-term memory right amygdala-hippocampus complex: P < .001, partial r = 0.633). A history of mTBI did not modulate the association between war zone–related stress and GM diffusion. CONCLUSIONS AND RELEVANCE: This study revealed an association between war zone–related stress and alteration of limbic GM microstructure, which was associated with cognitive functioning. These results suggest that altered limbic GM microstructure may underlie the deleterious outcomes of war zone–related stress on brain health. Military service members may benefit from early therapeutic interventions after deployment to a war zone

    Developmental delay in Rett syndrome: data from the natural history study

    Get PDF
    Background: Early development appears normal in Rett syndrome (OMIM #312750) and may be more apparent than real. A major purpose of the Rett Syndrome (RTT) Natural History Study (NHS) was to examine achievement of developmental skills or abilities in classic and atypical RTT and assess phenotype-genotype relations in classic RTT. Methods: Developmental skills in four realms, gross and fine motor, and receptive and expressive communication from initial enrollment and longitudinal assessments for up to 7 years, were assessed from 542 females meeting criteria for classic RTT and 96 females with atypical RTT divided into two groups: 50 with better and 46 with poorer functional scores. Data were analyzed for age at acquisition and loss of developmental features and for phenotype-genotype effects. Acquired, lost, and retained skills were compared between classic RTT and atypical RTT with better or poorer functional scores using Fisher's Exact test. To examine if the mean total score from the Motor Behavioral Assessment during follow-up differed for acquiring a skill, we used a generalized estimating equation assuming compound symmetry correlation structure within a subject. A general linear model was used to examine whether the mean age of acquisition or loss of a developmental skill differed by mutation type. P values <0.05 were considered significant and were two-sided without adjustment for multiple testing. Statistical analyses utilized SAS 9.3 (SAS Institute, Cary, NC, USA). Results: Early developmental skills or abilities were often acquired albeit later than normal. More complex motor and communication acquisitions were delayed or absent. Clinical severity was less in those achieving the respective skill. Individuals with R133C, R294X, and R306C point mutations and 3′ truncations tended to have better developmental outcomes. Conclusions: Early developmental skills were acquired by many, but clear differences from normal emerged, particularly in skills expected after age 6 months. When comparing clinical severity, greater acquisition of specific skills was associated with specific mutations, confirming the impression that these mutations confer milder developmental abnormalities. These data may serve for planning and interpretation of early intervention studies in RTT. Trial registration This NHS study, clinicaltrials.gov (NCT00296764), represents the largest group of RTT participants assessed repeatedly by direct examination

    Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 Domain–Mediated PUMA Degradation

    Get PDF
    The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent activity of chloroquine that selectively promotes apoptosis in melanoma cells

    Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 Domain–Mediated PUMA Degradation

    Get PDF
    The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent activity of chloroquine that selectively promotes apoptosis in melanoma cells

    Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection

    Get PDF
    Pulmonary macrophages have two distinct ontogenies: long-lived embryonically-seeded alveolar macrophages (AM) and bone marrow-derived macrophages (BMDM). Here, we show that after infection with a virulent strain of Mycobacterium tuberculosis (H37Rv), primary murine AM exhibit a unique transcriptomic signature characterized by metabolic reprogramming distinct from conventional BMDM. In contrast to BMDM, AM failed to shift from oxidative phosphorylation (OXPHOS) to glycolysis and consequently were unable to control infection with an avirulent strain (H37Ra). Importantly, healthy human AM infected with H37Ra equally demonstrated diminished energetics, recapitulating our observation in the murine model system. However, the results from seahorse showed that the shift towards glycolysis in both AM and BMDM was inhibited by H37Rv. We further demonstrated that pharmacological (e.g. metformin or the iron chelator desferrioxamine) reprogramming of AM towards glycolysis reduced necrosis and enhanced AM capacity to control H37Rv growth. Together, our results indicate that the unique bioenergetics of AM renders these cells a perfect target for Mtb survival and that metabolic reprogramming may be a viable host targeted therapy against TB

    Lymphoid Tissue Damage in HIV-1 Infection Depletes Naïve T Cells and Limits T Cell Reconstitution after Antiretroviral Therapy

    Get PDF
    Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution

    Long-term influence of normal variation in neonatal characteristics on human brain development

    Get PDF
    It is now recognized that a number of cognitive, behavioral, and mental health outcomes across the lifespan can be traced to fetal development. Although the direct mediation is unknown, the substantial variance in fetal growth, most commonly indexed by birth weight, may affect lifespan brain development. We investigated effects of normal variance in birth weight on MRI-derived measures of brain development in 628 healthy children, adolescents, and young adults in the large-scale multicenter Pediatric Imaging, Neurocognition, and Genetics study. This heterogeneous sample was recruited through geographically dispersed sites in the United States. The influence of birth weight on cortical thickness, surface area, and striatal and total brain volumes was investigated, controlling for variance in age, sex, household income, and genetic ancestry factors. Birth weight was found to exert robust positive effects on regional cortical surface area in multiple regions as well as total brain and caudate volumes. These effects were continuous across birth weight ranges and ages and were not confined to subsets of the sample. The findings show that (i) aspects of later child and adolescent brain development are influenced at birth and (ii) relatively small differences in birth weight across groups and conditions typically compared in neuropsychiatric research (e.g., Attention Deficit Hyperactivity Disorder, schizophrenia, and personality disorders) may influence group differences observed in brain parameters of interest at a later stage in life. These findings should serve to increase our attention to early influences

    A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

    Get PDF
    HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected “non-controllers” with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P≤0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion
    corecore