Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 Domain–Mediated PUMA Degradation

Abstract

The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent activity of chloroquine that selectively promotes apoptosis in melanoma cells

    Similar works