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Abstract

The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes 

apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms 

that control PUMA protein stability are not understood. We show that a lysosome-independent 

activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces 

the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain 

deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a 

heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both 

chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized 

PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent 

activity of chloroquine that selectively promotes apoptosis in melanoma cells.

Introduction

Melanoma is one of the most aggressive cancers that presents a great clinical challenge to 

treat. While primary melanoma is curable by early surgical excision, metastatic melanomas 

are highly aggressive with an average survival of 6–10 months (Tsao et al., 2012). Despite a 

large number of clinical trials and considerable progress in understanding the molecular 

etiology, metastatic melanoma remains resistant to treatment and the lifetime risk of it 

continues to steadily increase (Gray-Schopfer et al., 2007). Recently, BRAF and MAPK 

inhibitors have shown significant clinical activity, yet these successes are limited by the 

swift development of resistance (Ji et al., 2012). Identification of novel therapeutic targets 

and additional treatment options are much needed to combat this malignancy.
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Apoptosis is a cellular demolition process that involves an intricate interplay of pro- and 

anti-apoptotic Bcl-2 family proteins leading to mitochondrial damage and cytochrome C 

release followed by caspase activation (Chipuk et al., 2010; Green and Evan, 2002). 

Resistance to apoptosis plays a central role in tumor progression and enables malignant cells 

to become unresponsive to chemotherapy and radiation treatment modalities (Green and 

Evan, 2002). Increased production of anti-apoptotic proteins or silencing of pro-apoptotic 

proteins contribute to impaired apoptosis. Bcl-2 family anti-apoptotic members consist of 

Bcl-2, Bcl-Xl, Mcl-1 and Bcl-w, and pro-apoptotic members include Bim, Bid, Bad, Bak, 

Bax, NOXA and PUMA (Chipuk et al., 2008; Chipuk and Green, 2008; Chipuk et al., 

2010). The pro-apoptotic proteins harbor a single BH3 domain and are called as BH3-only 

proteins. The BH3 domain of these proteins contains an amphipathic α-helix structure that 

engages the hydrophobic groove of pro-survival partners to activate Bak and Bax at the 

mitochondria (Sattler et al., 1997).

The levels of BH3-only proteins are tightly regulated to restrict cell destruction (Strasser et 

al., 2011). Expression of these proteins is regulated by various mechanisms including 

enhanced transcription and post-translations modifications (Puthalakath and Strasser, 2002). 

The best example of transcriptional control of BH3-only proteins derives from studies of 

p53-mediated transcriptional targets. In response to DNA damage, p53 binds to specific 

sequence elements near the promoters of PUMA and NOXA genes and enhances their 

transcription (Nakano and Vousden, 2001; Yu et al., 2001). As a result, pro-apoptotic BH3-

only protein levels increase and result in mitochondrial permeabilization with subsequent 

activation of caspase-mediated apoptosis. Tumor cells avoid this cell death mechanism by 

inactivating upstream components of p53 or selecting for p53 mutations (Vousden and Lane, 

2007; Vousden and Prives, 2009). While mutations in p53 gene are common in multiple 

malignancies, they are rare in melanoma (Chin et al., 1998; Lee and Herlyn, 2012). The 

upstream regulator of p53 called p14ARF is mutated in familial melanoma (Chin et al., 

1998). Perturbation of downstream components of the apoptotic pathway provides a 

selective advantage in circumventing the need for inactivating mutations of the p53 gene. 

For example, expression of the downstream apoptotic factor Apaf-1 is silenced in some 

melanomas (Soengas et al., 2001). These studies support the notion that both upstream and 

downstream components of p53 pathways are disabled in melanoma.

Autophagy is a regulated degradative process that recycles damaged organelles and 

cytoplasmic macromolecules to enable cell survival (Levine and Kroemer, 2008). Typically, 

autophagy involves sequestration of cytoplasmic components in a double membrane, the 

contents of which are degraded by delivery to the lysosome. Chloroquine (CQ) is a classical 

anti-malarial and anti-inflammatory drug that inhibits lysosomal acidification. In cell culture 

assays, CQ is commonly used as an inhibitor of autophagy. Depending on the type of 

cancer, autophagy may become dysregulated in a manner that enables tumor cell survival 

even in a limited nutrient environment (Baehrecke, 2005; White, 2012). This implication led 

to the use of CQ as a small molecule inhibitor of autophagy in xenograft tumor studies and 

clinical trials (Amaravadi et al., 2011b; Sheen et al., 2011; Tormo et al., 2009; Yang et al., 

2011). While CQ has also been reported to promote apoptosis in several tumor models 

(Amaravadi et al., 2007; Boya et al., 2005; Maclean et al., 2008; Tang et al., 2011; Walls et 
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al., 2010), its effects on PUMA remain unclear. Here we use CQ to reveal the BH3 domain-

dependent and lysosome-independent degradation of PUMA protein and associated 

apoptosis in melanoma cells.

Results

Chloroquine activates apoptosis in melanoma cells

Because CQ exerts anti-tumor activity (Amaravadi et al., 2011b; Amaravadi et al., 2007; 

Sheen et al., 2011), we examined cell survival of human melanoma derived cell lines (SK-

MEL23, MEL501, MELSK5, MEL526 and MEL624) and non-melanoma cell lines 

(HCT116, MCF7 and H1299) after treatment with chloroquine. Based on pilot studies with a 

range of concentrations, we chose 50μM chloroquine for further experiments. Viability of 

the majority of melanoma cell lines decreased with 24 hours of exposure to 50μM 

chloroquine (Fig 1a). In contrast, viability of the non-melanoma cell lines was largely 

unchanged. We then measured caspase activity as an indicator of apoptosis. The decreased 

viability of melanoma cells correlated with a dramatic increase in caspase levels, which was 

not observed in the non-melanoma cell lines (Fig 1b).

Oncogenic mutations in BRAF and N-RAS are known to promote melanomagenesis 

(Dankort et al., 2009; Davies et al., 2002; Pollock et al., 2003). To explore the relevance of 

these upstream signaling pathways in chloroquine-induced apoptosis, we used human 

melanoma cell lines that express wild type BRAF and N-RAS genes (SK-mel187, mel505, 

RPMI8322), cells mutant for N-RAS (SK-mel103, mel224, VMM39), and cell lines with 

BRAF mutations (SK-mel24, SK-mel28, WM2664). All melanoma cell lines with the 

exception of SK-mel187 showed decreased viability and a corresponding increase in caspase 

activity in response to the CQ treatment (Fig 1c,d). Therefore, there was no correlation 

between CQ responsiveness and the oncogenic mutation in these melanoma cell lines.

Chloroquine inhibits melanoma tumor growth IN VIVO

To test the effects of CQ in an in vivo model, we implanted SK-MEL23 melanoma cells in 

NOD-SCID mice and evaluated the effects of CQ on subcutaneous tumor growth. 

Melanoma cells were allowed to establish an average volume of 100 mm3 at which point the 

mice were divided into two groups. A set of four mice served as vehicle control and six mice 

were treated with a low dose of CQ (25 mg/kg body weight) on an every three-day treatment 

schedule for 21 days. Tumor volume measurements showed that chloroquine treatment 

reduced the tumor volume in the experimental group (p = 0.0001) compared to the vehicle 

controls (Fig 2a). There were no differences in total body weight between the treatment and 

control groups. At the end of the study, xenografts were excised and gross weight values of 

tumors were recorded (Fig 2b). Consistent with tumor volume measurements, we found a 

statistically significant (p=<0.05) reduction in tumor mass from this low dose of CQ-treated 

animals as compared to the vehicle group.

Chloroquine promotes PUMA protein accumulation in melanoma cells

Chloroquine-induced activation of apoptosis led us to study its effects on expression of the 

pro-apoptotic protein PUMA. SK-MEL23 and VMM39 melanoma cells were treated with 
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etoposide as an activator of p53-mediated PUMA induction (Nakano and Vousden, 2001; 

Yu et al., 2001) or with different concentrations of chloroquine (25 and 50μM). Immunoblot 

analysis of these cell extracts showed that etoposide induction of p53 increased the levels of 

its target proteins PUMA and p21 (Fig 3a,b). Remarkably, chloroquine also increased levels 

of PUMA protein in a dosage-dependent manner while the levels of p53 and p21 did not 

change. In an effort to address the requirement for PUMA in CQ-mediated apoptosis, SK-

MEL23 cells were transfected with control or PUMA siRNAs and exposed to CQ. The 

results showed that siRNA efficiently depleted PUMA protein and this resulted in dramatic 

reduction of CQ-mediated apoptosis (Suppl Fig S1). To substantiate these results, we treated 

additional melanoma cell lines (mel526 and mel501) with chloroquine and observed similar 

effects on PUMA (Suppl Fig S2). Although PUMA protein was induced in response to p53 

activation (Fig 3a,b), chloroquine did not change the levels PUMA protein in MCF7 breast 

cancer cells (Suppl Fig S3) and correspondingly there was no apoptotic response (Fig 1b). 

To test whether the observed increase in PUMA protein levels was due to transcription, we 

treated several melanoma cell lines with CQ and quantified PUMA transcripts. The results 

showed that CQ did not change the transcript levels of PUMA (Fig 3d,e).

To demonstrate that the CQ-mediated increase in the levels of endogenous PUMA protein is 

due to inhibition of its degradation, we determined the stability of PUMA protein in the 

presence or absence of CQ. Cycloheximide is a de novo protein synthesis inhibitor 

commonly used to evaluate the half-life of proteins (Ballard, 1977; Carreira et al., 2006; 

Waters et al., 1991). SK-MEL23 melanoma cells were treated with cycloheximide in the 

presence or absence of CQ and the cell extracts were blotted for PUMA protein (Fig 4a,b). 

PUMA protein signal intensity from three independent experiments was quantified by 

luminescence measurements (Fig 4c). There was a 50% decrease of endogenous PUMA 

protein in 3 hours in the absence of CQ. Chloroquine prolonged the stability of this protein 

and even after 5 hours of cycloheximide exposure nearly 80% of PUMA protein remained.

BH3-domain is essential for PUMA protein degradation

The BH3 domain of PUMA engages the hydrophobic groove of anti-apoptotic family 

members to activate apoptosis. Because this domain is critical for apoptosis, we reasoned 

that it may be involved in PUMA destabilization and that a mechanism in melanoma cells 

specifically may target this domain to avoid cell death. To test this idea, we introduced 

plasmids encoding for full-length or BH3-deletion mutant PUMA into melanoma cells and 

conducted cycloheximide chase assays for these ectopically expressed proteins. After 5 

hours of cycloheximide incubation, nearly 50% of full-length PUMA protein remained (Fig 

5a,b), while the BH3 domain deletion mutant protein levels were unchanged. These results 

suggest that the BH3 domain plays a critical role in PUMA protein destabilization. We 

questioned whether this BH3 domain was sufficient to direct degradation of a heterologous 

protein. We constructed GFP fusions with a BH3 domain or a mutant BH3 domain (mBH3) 

devoid of the conserved amino acid sequence Leu-Arg-Arg (Fig 5c). We introduced these 

recombinant plasmids into melanoma cells and examined GFP expression. No GFP signal 

was visualized with the wild-type BH3 fusion transfected cells (Fig 5d). In contrast, the 

mutant BH3 domain showed intense GFP fluorescence (Fig 5d). To further determine the 

effects of CQ on BH3 fusion protein stability, melanoma cells were transfected with these 
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GFP constructs and treated with chloroquine. Immunoblots for GFP showed that 

chloroquine treatment restored the levels of wild-type BH3 domain fused GFP (Fig 5e). 

These results reinforce the essential role of the BH3 domain in PUMA degradation and that 

CQ inhibits degradation of PUMA actuated by this domain.

Because CQ did not elicit an apoptotic response and did not stabilize PUMA protein in non-

melanoma cell lines, we questioned the integrity of this BH3 targeting mechanism in these 

cell lines. When GFP fusion constructs were transduced into non-melanoma cell lines 

(MCF7, H1299 and HCT116) similar GFP fluorescence intensities were observed for both 

wild-type and mutant BH3 fusion proteins (Suppl Fig S4).

Lysosomal protease-independent degradation of PUMA protein

Chloroquine is generally considered to exert its drug effect through inhibition of lysosomal 

acidification. Because melanoma cells treated with CQ increased the levels of PUMA 

protein, we explored whether a lysosomal process causes PUMA protein destabilization. 

Surprisingly, bafilomycin A, a commonly used lysomotropic compound, and the lysosomal 

cathepsin inhibitor ALLN had no affect on PUMA protein levels (Suppl Fig S5). 

Furthermore, the protease inhibitor leupeptin and proteasome inhibitors lactacystin did not 

inhibit degradation of PUMA protein (Suppl Fig S5). MG132 treatment produced a slight 

increase in the PUMA protein levels, but not nearly as much as CQ (Suppl Fig S5). We 

reasoned that this is most likely due to robust p53 protein stabilization by MG132. Although 

ALLN, MG132 and lactacystin increase levels of p53, PUMA protein degradation was 

specifically inhibited by chloroquine. We also incubated melanoma cells with either CQ or 

the combination of lysosomal protease inhibitors E64d and pepstatin A (Tanida et al., 2005). 

The increase in PUMA was exclusive to CQ, although both treatments strongly inhibited 

lysosomal activity as assessed by the autophagy markers LC3 and p62 (Fig 6a,b,c,d). 

Consistent with their effects on PUMA, CQ but not the lysosomal inhibitors stimulated 

apoptosis (Fig 6e). These results clearly demonstrate that lysosomal protease function is 

dispensable for PUMA degradation in melanoma cells.

Discussion

Impaired apoptosis is one of the critical steps in malignant transformation. Understanding 

this pathway in tumor cells may have major clinical implications, as chemoresistant 

malignancies are generally unable to activate apoptotic responses. Here we show that 

chloroquine has a profound effect on melanoma cell viability and promotes apoptosis. 

Although chloroquine did not alter the levels of p53 protein, it caused a transcription-

independent increase in levels of PUMA protein and promoted apoptosis. We demonstrate 

that chloroquine increases the half-life of PUMA protein in multiple human melanoma-

derived cell lines. In these cells, the BH3 domain of PUMA protein is responsible for its 

destabilization. Remarkably, the BH3 domain was sufficient to promote degradation of a 

heterologous protein and this was selective for melanoma cells. Furthermore, we 

demonstrate that chloroquine-mediated inhibition of PUMA protein degradation does not 

depend on lysosomal proteases. Because the BH3 domain is critical for pro-apoptotic 
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function for the protein, melanoma cells recognize this death promoting peptide region and 

degrade PUMA to avoid cell death.

Macroautophagy is commonly referred to as autophagy. In response to nutrient depletion, 

activation of autophagy leads to digestion of cytosolic macromolecules that provides energy 

sources required for cell survival. Importantly, oncogenic RAS transformation relies on 

autophagy to maintain energy balance (Guo et al., 2011; Lock and Debnath, 2011; Marino et 

al., 2011). This represents an advantage for malignant cells to multiply in a 

microenvironment with limited nutrient supplies. Therefore, targeting this autophagy 

dependency is a rational approach for anti-tumor therapy (Amaravadi et al., 2011a). For 

example, inhibition of autophagy by chloroquine led to selective pancreatic tumor regression 

and prolonged survival of mice implanted with pancreatic cancer xenografts (Yang et al., 

2011). HeLa cells exposed to the autophagy inhibitors hydroxychloroquine, bafilomycin A1, 

and monensin displayed increased mitochondrial cell death (Boya et al., 2005). In our study, 

and consistent with the observations from other reports (Guo et al., 2011; Yang et al., 2011), 

chloroquine exposure did not elicit caspase-mediated apoptotic responses in non-melanoma 

cell lines MCF7, HCT116 and H1299. Importantly, the majority of the melanoma cells 

dramatically activated apoptosis upon treatment with CQ. This led us to investigate the role 

of the p53-PUMA pathway that has been documented to initiate caspase-dependent 

apoptosis. Surprisingly, CQ treatment of melanoma cells resulted in PUMA protein 

accumulation but there was no increase in p53 protein. It is relevant to note that PUMA 

transcription is regulated by p53 dependent and independent mechanisms (Gomes and 

Espinosa, 2010; Schumm et al., 2006; Sykes et al., 2006; Tang et al., 2006; Wang et al., 

2009). Quantitative transcript analysis of CQ-treated melanoma cells showed that PUMA 

transcription was unchanged. Furthermore, protein stability studies demonstrate that CQ 

inhibits proteolysis of PUMA. PUMA protein undergoes phosphorylation at multiple sites, 

particularly serine 10, which leads to its destabilization (Fricker et al., 2010). It is unlikely 

that CQ impacts this phosphorylation as we demonstrate CQ stabilization is dependent on 

the BH3 domain of PUMA. It is unlikely that degradation of PUMA protein involves the 

proteasome for the following reasons: the absence of lysines for ubiquitin conjugation in 

PUMA and chloroquine promoted PUMA protein stability in a lysosomal activity-

independent manner. It is likely that CQ can stabilize other BH3-domain proteins. However, 

unlike PUMA, which lacks lysine, NOXA contains multiple lysines that may facilitate 

ubiquitin-mediated proteasomal degradation even in the presence of CQ.

Chloroquine is widely used to treat malaria by halting the P. falciparum replication cycle 

(Cooper and Magwere, 2008). CQ acts as a weak base that neutralizes low pH in the 

lysosome, thereby inactivating lysosomal proteases. We demonstrate an activity of CQ that 

is distinct from its classical function of lysosomal protease inhibition. CQ blocked 

degradation of PUMA, which requires the BH3 domain. This inhibition cannot be mediated 

by ubiquitination of PUMA nor dependent on lysosomal proteases, so the mechanism 

remains to be determined. The mechanism may be unique to melanoma, as we have not 

observed CQ-associated PUMA protein stability in several non-melanoma cell lines. Further 

investigation on how CQ alters the catabolism of BH3 proteins such as PUMA may lead to 

novel drug targets. Acidic organelles are generally sensitive to CQ exposure as it is a weak 
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base that neutralizes their pH. This property of CQ led us to suspect melanosomes as a 

possible site of PUMA protein degradation. Lysosomal protease inhibitors treatment 

increased the levels of the melanosome protein PMEL17 to a larger extend than CQ 

exposure (Suppl Fig S6), suggesting that PUMA may not be degraded in melanosomes.

Given the limited treatment options for melanoma, these studies suggest that melanoma may 

respond to a blockade of the mediators of BH3-dependent PUMA turnover. Consistent with 

our findings, chloroquine reduced melanoma tumor growth in vivo. Further evidence is 

suggested by the observation that leucine deprivation combined with chloroquine exposure 

led to widespread apoptosis in human melanoma cells (Sheen et al., 2011). High-dose IL-2 

is currently a treatment option for advanced stage melanoma. However, the toxicity 

associated with IL-2 administration has been problematic. Recently, IL-2 was combined 

with chloroquine to demonstrate inhibition of metastatic tumor growth in a murine model 

(Liang et al., 2012). The present studies provide a molecular basis for the anti-melanoma 

effect of CQ. Combined with our demonstration of CQ-associated PUMA activation, we 

propose that chloroquine may be useful in combination therapy for metastatic melanoma. 

Moreover, CQ might exert synergistic effects with chemotherapeutic agents (e.g., 

temozolomide) or BRAF-inhibitors (Bollag et al., 2012) in the treatment of melanoma. 

Although our in vivo studies show moderate tumor growth inhibition in the presence of 

25mg/kg of CQ, the concentration of CQ used in our in vitro experiments are higher than 

that used clinically. Additional animal studies are needed to translate the use of CQ in 

combination therapy to man.

Materials and Methods

Cell culture and reagents

HCT116 and MCF7 cells were maintained in high-glucose DMEM medium (Invitrogen) 

supplemented with L-glutamine and sodium pyruvate, with 10% fetal bovine serum (FBS) 

(Sigma). H1299 and melanoma cell lines (SK-MEL23, MEL-501, MEL-526, MEL-624, and 

MEL-697) were maintained in RPMI media (Invitrogen) with 10% FBS (Sigma). 

Bafilomycin A, chloroquine diphosphate, leupeptin, and MG-132 were obtained from 

Sigma, ALLN, etoposide, and Z-Vad-Fmk from R&D Systems (Minneapolis), E64d and 

Pepstatin A (Cayman Chemical) and lactacystin (AG Scientific).

Transfection

Human BH3 domain and the BH3 domain mutant lacking the LRR motif were cloned into 

EGFP vector, to express GFP-fusion proteins. Cells were grown to 50–60% confluency in 6-

well culture plates (Corning) with collagen-1 coated coverslips (BD Biosciences). All 

melanoma cell lines were transfected with FuGENE HD (Promega) according to 

manufacturer’s protocol. HCT116, MCF7, and H1299 cells were transfected with 

Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocol.

Whole-cell extracts and western blot analysis

Whole-cell extracts were prepared in urea buffer (6M urea, 100mM sodium 

dihydrophosphate, 10mM Tris pH8). SDS-PAGE was performed using TGX gradient gels 
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(Bio-Rad) and transferred onto PVDF (Millipore) using TransBlot SD semi-dry transfer 

apparatus (BioRad) as per manufacturer’s guidelines. The blots were probed with following 

antibodies; GFP, p53 & p21 (Santa Cruz), LC3 (Novus Biologicals), NOXA (Pierce), 

PUMA (AnaSpec), actin and p62 (Sigma). Blot images were captured on ImageQuant LAS 

4000 digital imaging system (GE Healthcare).

Apoptosis and viability assays

The cells (10 × 103/each well) were plated in 96-well plates (Corning). After culture 

overnight, either fresh media (control) or fresh media containing 50 uM of CQ was added 

for indicated time periods. The activation of apoptosis was determined using Caspase-Glo 

3/7 Assay System according to the manufacturer’s instructions (Promega). Cell viability was 

assessed using MTS-based assay (Promega).

In-vivo tumor implantation

NOD-SCID mice were implanted with 1.5 million of human melanoma SKMel23 cells in 

100μl serum free media subcutaneously into the right hind flank. Tumors were allowed to 

develop for 21 days until they reached average palpable size of 100 mm3. At this point, the 

animals were randomly divided into two groups, four controls and six treatment subjects. 

The control group received intraperitoneal injections of sterile saline (50μl), and treatment 

group was similarly injected with CQ at the concentration of 25mg/kg in saline, twice a 

week for 3 weeks. Xenograft size was measured twice a week with a digital caliper and the 

ellipsoidal tumor volumes were recorded prior to administration of each placebo or 

treatment injection. The Animal Care and Use Committee approved all procedures used in 

these experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CQ chloroquine

PUMA p53 Upregulated Modulator of Apoptosis

wt wild type

BH Bcl homology
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Figure 1. Chloroquine promotes apoptosis in melanoma cell lines
Three non-melanoma and five melanoma cell lines were exposed to 50IM CQ, cell viability 

(a) and apoptosis (b) were measured at indicated time points. c & d) Wild-type for N-RAS 

and BRAF or its mutant melanoma cell lines were treated with CQ as in A & B and the cell 

viability (c) and apoptotic response (d) to CQ was assessed.
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Figure 2. Chloroquine reduces growth of human melanoma cells in mice
a) NOD-SCID mice were implanted with SK-MEL23 cells, 21 days post-implantation, mice 

were divided in to two groups for vehicle and CQ treatment. Tumor volumes of vehicle or 

CQ treated mice were measured at indicated days and the growth kinetics of tumor volume 

shown on the graph (p = 0.0001). b) Dissected tumors from vehicle and CQ treated mice 

were weighed (p=<0.05).
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Figure 3. CQ promotes accumulation of PUMA protein in melanoma cells
a & b) Indicated melanoma cells were exposed to etoposide or different concentrations of 

CQ and the cell extracts were blotted with PUMA, p53, p21 and actin antibodies. c) Shows 

quantification of PUMA signal intensity from a & b. d & e) Melanoma cells were treated 

with etoposide or CQ and the relative levels of PUMA transcripts were assayed by q-PCR.
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Figure 4. CQ inhibits degradation of PUMA protein in melanoma cells
a & b) To determine the half-life of endogenous PUMA protein, control or CQ treated 

melanoma cells were exposed to cycloheximide, a protein synthesis inhibitor, and cell 

extracts harvested at different time points were blotted with PUMA antibody. c) Protein 

decay analysis from three experiments shown.
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Figure 5. The BH3 domain of PUMA mediates its degradation
a) To determine the role of the BH3 domain in PUMA protein stability, recombinant 

plasmids coding for HA-tagged wild-type or BH3 domain-deletion mutant PUMA were 

ectopically expressed in melanoma cells and the cell extracts were blotted with HA antibody 

or actin antibodies. b) Densitometry scanning of three experiments is shown on a graph. c) 

Schematic showing BH3 domain and its mutant peptides fusion with GFP. d) Plasmids from 

c were introduced into melanoma cells and the GFP expression were imaged. e) Mutant BH3 

domain and wt-BH3 domain fused to GFP expressed in melanoma cells and the cells treated 

with CQ and blotted with indicated antibodies.
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Figure 6. Lysosomal protease-independent degradation of PUMA protein in melanoma cells
a & b) Melanoma cells were exposed to CQ or lysosomal protease inhibitor cocktails (E64d

+pepstatin A) and the cell extracts were blotted with antibodies shown. c) Melanoma cells 

transfected with GFP-LC3, exposed to CQ or lysosomal protease inhibitor cocktails and 

visualized under microscope. d) GFP punctae counted from three experiments show on 

graph. e) Melanoma cells treated with CQ or lysosomal protease inhibitors and the measured 

caspase activity shown.
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