18,185 research outputs found

    Finite element implementation of Robinson's unified viscoplastic model and its application to some uniaxial and multiaxial problems

    Get PDF
    A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model

    Extended Defects in the Potts-Percolation Model of a Solid: Renormalization Group and Monte Carlo Analysis

    Get PDF
    We extend the model of a 2dd solid to include a line of defects. Neighboring atoms on the defect line are connected by ?springs? of different strength and different cohesive energy with respect to the rest of the system. Using the Migdal-Kadanoff renormalization group we show that the elastic energy is an irrelevant field at the bulk critical point. For zero elastic energy this model reduces to the Potts model. By using Monte Carlo simulations of the 3- and 4-state Potts model on a square lattice with a line of defects, we confirm the renormalization-group prediction that for a defect interaction larger than the bulk interaction the order parameter of the defect line changes discontinuously while the defect energy varies continuously as a function of temperature at the bulk critical temperature.Comment: 13 figures, 17 page

    Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Get PDF
    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions

    Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress

    Get PDF
    The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry

    Evaluation of commercially-available spacecraft-type heat pipes

    Get PDF
    As part of an effort to develop reliable, cost effective spacecraft thermal control heat pipes, life tests on 30 commercially available heat pipes in 10 groups of different design and material combinations were conducted. Results for seven groups were reported herein. Materials are aluminum and stainless steel, and working fluids are methanol and ammonia. The formation of noncondensible gas was observed for times exceeding 11,000 hours. The heat transport capacities of the pipes were also determined

    Downwind hazard calculations for space shuttle launches at Kennedy Space Center and Vandenberg Air Force Base

    Get PDF
    The quantitative estimates are presented of pollutant concentrations associated with the emission of the major combustion products (HCl, CO, and Al2O3) to the lower atmosphere during normal launches of the space shuttle. The NASA/MSFC Multilayer Diffusion Model was used to obtain these calculations. Results are presented for nine sets of typical meteorological conditions at Kennedy Space Center, including fall, spring, and a sea-breeze condition, and six sets at Vandenberg AFB. In none of the selected typical meteorological regimes studied was a 10-min limit of 4 ppm exceeded

    Prediction of engine exhaust concentrations downwind from the Delta-Thor Telsat-A launch of 9 November 1972

    Get PDF
    Results are presented of the downwind concentrations of engine exhaust by-products from the Delta-Thor Telsat-A vehicle launched from Cape Kennedy, Florida on November 9, 1972 (2014 EST). The meteorological conditions which existed are identified as well as the exhaust cloud rise and the results from the MSFC Multilayer Diffusion Model calculations. These predictions are compared to exhaust cloud sampled data acquired by the Langley Research Center personnel. Values of the surface level concentrations show that very little hydrochloric acid, carbon monoxide, or aluminum oxide reached the ground

    Joining techniques for fabrication of composite air-cooled turbine blades and vanes

    Get PDF
    Activated diffusion brazing studies of joining methods for composite air-cooled turbine blade and vane fabricatio
    • …
    corecore