General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-78826) EVALUATION OF COMMERCIALLY-AVAILABLE SPACECRAFT-TYPE HEAT PIPES (NASA) 16 p HC A02/MF A01 CSCL 201

N78-20459

Unclas G3/34 09483

EVALUATION OF COMMERCIALLY-AVAILABLE SPACECRAFT-TYPE HEAT PIPES

by W. B. Kaufman and L. K. Tower Lewis Research Center Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at the Third International Heat Pipes Conference sponsored by the American Institute of Aeronautics and Astronautics Palo Alto, California, May 22-24, 1978

W. B. Kaufman and L. K. Tower* National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

Abstract

As part of an effort to develop reliable, cost effective spacecraft thermal control heat pipes, Lewis Research Center of NASA is conducting life tests on 30 commercially-available heat pipes in 10 groups of different design and material combinations. Results for seven groups were reported herein. Materials are aluminum and stainless steel, and working fluids are methanol and ammonia. The formation of noncondensible gas was observed for times exceeding 11 000 hours. The heat transport capacities of the pipes were also determined.

Considerable gas was found in two groups of methanol pipes; one group showed no gas. One group of ammonia pipes had no observable gas. Another group had much gas. Manufacturers' processing schedules were examined for differences explaining the presence of gas. Heat transport capacity was found to be severely reduced in some pipes containing gas.

Introduction

NASA has been interested in the development of reliable, cost-effective heat pipes for spacecraft thermal control. As a part of this effort, Lewis Research Center began a program to assess the reliability and performance of commercially-available spacecraft thermal-control pipes. The types and sources of pipes procured for the Lewis program reflect the variety of fabrication and processing techniques described in a survey for Goddard Space Flight Center. 1

One of the main factors investigated was the evolution of noncondensible gas by corrosion reactions of working fluids with the heat pipe structure. This troublesome phenomenon can occur with working fluids that are compounds, degrading heat pipe performance and shortening useful life. 2, 3, 4, 5 Life tests were conducted for a period exceeding 11 000 hours, with temperature elevated to 60° C to accelerate the formation of gas. Another factor observed was the heat transport capacity in one "g".

The purpose of this study was to supplement the survey of reference 1 with laboratory experience on spacecraft thermal control heat pipes. In conjunction with reference 1, the information herein may facilitate decisions as to processing procedures necessary for adequate life. An additional benefit may be improved knowledge of heat pipe characteristics among potential users.

Advances in technology since the pipes were manufactured in 1974 could result in any of the manufacturers proposing items differing from those reported herein both in construction and in processing.

Apparatus and Test Procedure

Heat Pipes

four manufacturers. This paper is confined to those *Member AIAA.

Pipes of 10 different types were purchased from

pipes for which the testing time exceeded 11 000 hours on January 1, 1978.

The fabrication and processing represented the then-current procedures for each of the manufacturers, and are reflected in the inputs to reference 1. Three pipes of each type were purchased to give a better sample. All pipes were of about 92 cm length and 1.27 cm diameter.

Table 1 provides an index of the heat pipes tested, associating heat pipe groups with the internal configuration, working fluid, envelope material, and processing schedule. Tables 2, 3, and 4 present the processing schedules provided by the manufacturers.

Figure 1 shows the internal configurations. All tubes were threaded the entire length with grooves. Configuration I consisted of a metal fiber slab wick and two screen arteries. A cap of thin foil at the evaporator end of the arteries was perforated with tiny holes to vent gas trapped in the arteries. Configuration II consisted of multiple screen arteries centered by a screen support. Configuration III had an artery of spiralled screen contained in a screen tube and supported by six screen pedestals. All internal parts were 304 stainless steel except for Configuration II in which 316 stainless steel was used. All envelopes or tubes were made either of 6061-T6 aluminum or of 304 stainless steel.

Test Facilities

Figure 2 shows a heat pipe mounted on its support plate. The plate in turn is attached to a mounting flange. A vacuum housing, seen covering a second heat pipe, is clamped to the flange. This housing is evacuated to about 8 N/m^2 (60 millitorr). The mounting flange pivots on an instrument rack and a jack screw on the end of the housing enables evaporator elevation to be adjusted.

The evaporator heater and the condenser heat extractor may also be seen in figure 2. The heater is a stainless tube of 2.5 cm diameter and 30.5 cm length sprayed with alumina, wound with resistance wire and resprayed. A split annular aluminum sleeve is inserted between the heater tube and the heat pipe. Thermal conduction grease is applied liberally to the surfaces of contact. Figure 3 shows the sleeve in place, with heater partially withdrawn. The first 5 cm of the sleeve is spaced from the remainder by a plastic disk. The resulting partial thermal isolation of the thermocouple at the evaporator end makes response to dryout a little more sensitive. Radiation losses are reduced by several wraps of aluminum foil over the heater. The 30.5 cm heat extractor (fig. 2) consists of a series of split brass blocks of about 2.5 cm length spaced slightly apart. The block halves are penetrated by two stainless tubes brazed to form half a heat extractor. The two halves are clamped on the pipe by two bolts through each block. The blocks are spaced off the condenser by shrink tubing of 0.03 cm thickness. Coolant circulates through the stainless tubes in such a manner that the average sink temperature is uniform along the condenser.

Temperatures are measured by 19 iron, constantan thermocouples, three in the evaporator, five in the adiabatic section, and on top between each condenser block pair. Couples in the condenser and adiabatic sections are spotwelded on stainless pipes, and are glued down on aluminum pipes by thermally conducting epoxy cement. The thermocouple installation on the evaporator is described elsewhere. Figure 4 shows the locations of the thermocouples on the pipes. An additional thermocouple in the evaporator is connected to an overtemperature sensor, set to shut the heater off at about 75° C.

A cooling system circulates water to the heat extractors except when performance or noncondensible gas is being checked. The temperature of the water is adjusted to hold the adiabatic section temperature to $60^{\rm o} \pm 1.5^{\rm o}$ C. For performance and gas checks a temperature-controlled bath of ethyleneglycol water mixture with a small circulating pump is attached to individual pipes, and is capable of providing temperatures from $-10^{\rm o}$ to $60^{\rm o}$ C.

A data system controlled by a desktop computer was used to obtain data. This sytem was also used to plot the data for evaluation from recordings on tape cassettes.

Results and Discussion

Noncondensible Gas Accumulation

The noncondensible gas inventory was checked at start of testing, at an intermediate time, and near the time of reporting. The latter times varied. For taking of the gas data the coolant bath was operated near $0^{\rm O}$ C. The relatively low adiabatic temperature and heat pipe internal pressure assured that the noncondensible gas occupied as much of the condenser as possible.

The moles $\,$ n $\,$ of noncondensible gas were computed from the thermocouple readings by the ideal gas law as^2

$$n = \sum_{i=i}^{N} \frac{p_{ad} - p_{vi}}{RT_{i}} A_{v} L_{b}$$
 (1)

where

pad vapor pressure at the mean adiabatic temperature

Ti absolute wall temperature in ith thermocouple of condenser

i thermocouple number

if number of first couple showing gas

N total number of thermocouples

pvi working fluid vapor pressure at Ti

Av vapor cross section area of pipe

distance from one condenser block to next, center to center

The vapor cross sectional area of the pipe at any operating temperature was computed from the total working fluid inventory, the amount of working fluid in the vapor phase, and the total volume of the pipe available for liquid and gas. $A_{\rm V}$ was assumed constant with position. For best determinations of gas the evaporators were placed 0.3 cm below condensers. Puddles detected in some pipes were thereby moved out of the condenser.

Methanol pipes. At the time of startup and also around 4300 hours data were taken which were suitable for a visual, qualitative judgement as to the presence of gas. At about 12 000 hours a better determination of gas was made. The results are shown in Table 5.

Heat pipes of group A showed no gas even at the 12 000-hour point. Give of the heat pipes of group B and one of group C showed noncondensible gas at startup. This represents either gas introduced in processing or gas generated on the shelf during the interval between manufacture and startup. For the methanol pipes this was a span of 23 to 25 months. At the 4300-hour point all pipes of group B and one of group C had observable gas.

At the 12 000-hour level all pipes of groups B and C had gas. On the average, group B had about two and one-half times the gas of group C. The gas in group B was sufficient to shut nearly all the condenser off at a typical gas check condition of 12 watts heater power and adiabatic temperature of 27° C. This is shown in figure 5, a typical plot produced by the data system from data stored on tape.

Noncondensible gas evolution in methanol stainless-steel pipes has been previously studied. 3 Equations contained therein, based upon experiment, enable a "theoretical" gas evolution in to be computed. The variables are time, temperature, and total area exposed to the working fluid. For the methanol pipes in the present tests, the theoretical quantity of gas evolved at 60° C over 12 000 hours is found to be in the range of 3×10^{-6} g moles. This amount of gas is undetectable in our facility. It is also one to two orders of magnitude less than that measured for pipes of groups B and C.

Comparison of processing schedules for methanol, stainless-steel pipes of groups A, B, and C (Tables 1, 2, and 3, respectively) indicate one possibly noteworthy variation. The pipes of group A were vacuum fired to 1000° C for 1 hour after assembly, and the pipes of group C were fired to 315° C for 4 hours. These groups had less gas than the pipes of group B for which no such firing is indicated.

Ammonia pipes. Table 6 presents noncondensible gas in ammonia filled pipes. The pipes of group D show by far the most gas. Indeed considerable gas was present in pipes 10 and 11 at start of testing. These pipes, with the rest of the ammonia pipes except pipe 12 were on the shelf about 18 months before startup. Pipe 12 of group D was accidently punctured at installation. After reprocessing and refilling by the manufacturer, it was placed on test within 2 weeks. This pipe showed no gas at startup, and less than half as much as its siblings after the 12 000- to 14 000-hour points. The conclusion seems to be that the

gas in pipes 10 and 11 was not introduced in processing, but accumulated on the shelf at room temperature.

The pipes of group D represent a couple between aluminum and stainless steel. Electrochemistry cannot bear the entire blame for the amounts of gas formed relative to the other pipes, since groups E and F also produce couples. Moreover, all stainless-steel pipe 21 of group G showed as much gas as a pipe in group E, processed in a manner similar to group G. Reference to the processing schedules of Tables 2, 3, and 4 for insight as to the possible cause of gas in group D is inconclusive. For instance, pipes of groups D, E, and F received reflux charges which were dumped before final filling. Group F was refluxed with unprocessed ammonia and filled with processed ammonia. Group F was treated with dichromate deoxidizer. The processing of group E therefore resembles that of group D more than group F, yet group D formed much more gas than any pipes of group E.

The pipes of group D were cleaned and baked to an extent probably exceeding the others. The conjecture can be made that perhaps the cleaning was responsible for the gas. Indeed, recent work² has suggested that the deliberate introduction of contaminating water in the charge to be refluxed and dumped may greatly lessen gas formation.

Heat Transport Capability

The one "g" heat transport capability was determined for the pipes where feasible. The tests were conducted at about the same time as the most recent gas accumulation checks reported in Tables 5 and 6. Power to the evaporator heater was used as the heat input to the condenser. Very little was lost to the environment because of radiation shielding of the heater, low heater temperature, and enclosure in a vacuum. The procedure was to set an evaporator elevation by raising the upstream end of the evaporator a predetermined amount above the downstream end of the condenser. Power was increased in increments until dryout was detected. Usually thermocouple 1 (fig. 4) would suddenly begin rising without apparent limit. In some instances one or more thermocouples of the evaporator would increase by several degrees after power was changed, but would stabilize. This was also interpreted as dryout, possibly of grooves only, and was usually followed by runaway dryout with a further small increase in power. No distinction has been made in these modes of dryout. About 10 minutes was allowed between power changes for equilibrium to be restored. Care was taken to reprime the liquid carrying structures after dryout by shutting off power and lowering the evaporator below the condenser for a period of time. The nominal adiabatic temperature was chosen as 50° C for the tests, and was maintained wherever the cooling system would allow.

Methanol pipes. Figure 6 shows the maximum heater power before dryout against evaporator elevation for the methanol pipes of group A. Below an evaporator elevation of 1.27 cm a sufficiently low coolant temperature could not be obtained to hold the adiabatic temperature near 50°C because of the high power being transported. The heat capacity of this group of pipes at no evaporator elevation can be projected linearly to be about 290 watts. A variable conductance pipe of similar internal design but twice the length, tested in a similar

facility, gave results that extrapolate to about 230 watts.

Because of the severe gas blockage the pipes of group B could not be tested for heat transport capability. The conductances of these pipes were so much reduced that excessive adiabatic temperatures would have been reached at any appreciable heat input. Data determined by the manufacturer at the time of shipment indicate that these pipes as a group should be capable of at least 150 watts with no evaporator elevation.

Figure 7 shows maximum heater powers for dryout against evaporator elevation for pipes of
group C. Two pipes, 7 and 8, performed at a very
low level which was substantiated by repetition on
other occasions. Pipe 9, on the other hand, could
not be dried out with 300 watts at 2.5 cm or with
279 watts at 3.8 cm. After the latter determination, pipe 9 was left unattended with 95 watts at
0.63 cm over a lunch period and was found subsequently in the process of drying out. Possibly gas
inducted into the arteries of group C caused the
low or erratic performance observed. The behavior
of pipe 9 suggests that pipes of group C design may
offer very high performance if problems due to the
presence or generation of gas can be ameliorated.

Ammonia pipes. Figures 8, 9, 10, and 11 show maximum heater power before dryout against evaporator elevation for the ammonia heat pipes of groups D, E, F, and G, respectively. Most of the performance data for ammonia were obtained between about 12 000 and 15 500 hours. Except as noted the data were again taken at nominal adiabatic section temperatures of about 50° C.

The pipes of group D show great sensitivity to change in evaporator elevation but promise high zero "g" transport capacity. The best performers had three or four times the capacity of the poorest, pipe 11. Pipe 11 performance was checked at a later time and found to have worsened. These circumstances suggest the failure of an artery.

The pipes of group E were less sensitive to change in elevation than those of group D, but exhibited lower performance at low evaporator elevations. The anomolous behavior of pipe 13 will be discussed in the next subsection.

Two of the pipes of group F exhibited very similar heat transport capacities over the range of elevations. Pipe 18, however, could not be dried out at any power attainable with the heater. Heat transport capacity otherwise resembled that of group E.

Most heat transport data for the pipes of group G could not be taken at the desired adiabatic section temperature of 50° C used for the other pipes. The temperature of the controlled bath could not be lowered sufficiently to maintain 50° C at the dryout power. This may have been due to increased thermal resistance between the heat pipe vapor and the coolant passages in the heat extractor. However, group G exhibited higher transport capacity than any other group of ammonia pipes.

Group D promises performance similar to group G at low elevation and therefore at zero "g". This can be seen on figure 12 where the envelopes of no dryout for the ammonia pipes, from figures 8, 9, 10, and 11 are shown. An interesting feature is that all the aluminum-walled pipes, groups D, E, and F, are clustered together, with the stainless pipes of group G by themselves. However, the pipes of group E and the pipes of group G have the same internal configuration (fig. 1).

Problem of erratic performance. Some pipes exhibited very erratic maximum heat transport capability. This is best exemplified by pipe 13 of group E. At one point this pipe was found to dry out with 102 watts at 0.63 cm evaporator elevation. In attempting to repeat this observation at a later time the pipe was run to the 269-watt point shown on figure 3 without dryout. The pipe was then returned to a lower power for a weekend. When an effort was made to continue the search for the dryout point the pipe dried out at less than 100 watts. Possibly some arteries did not reprime despite considerable efforts to assure priming.

For this pipe and for others exhibiting erratic performance despite care, the possibility of partial blockage of arteries by gas must be reiterated. Whether noncondensible gas introduced to vary the thermal conductance becomes a problem may depend upon the pipe configuration with which it is used.

Concluding Remarks

The studies described here of necessity represent the level of heat pipe design and processing technology that existed at the time of fabrication in 1974. While advances may have been made since that time, the possibility exists that procedures leading to relatively gas-free pipes are not being uniformly observed. In methanol, stainless-steel pipes the inclusion of a very high-temperature vacuum bakeout after assembly may be desirable. In ammonia, aluminum-stainless-steel pipes the elimination of unwanted noncondensible gas still appears to be an art whose success may depend partly upon undocumented features in the processing schedule.

Acknowledgments

The skillful assembly and data taking assistance of our technicians William Frey and Robert Schaal are gratefully acknowledged.

References

- Edelstein, F., "Heat Pipe Manufacturing Study," Grumman Aerospace Corp., Bethpage, N. Y., CEM-10R, Aug. 1974. NASA CR-139140, 1974.
- Eninger, J. E., Fleischman, G. L., and Luedke, E. E., "Heat Pipe Materials Compatibility," NASA CR-135069, 1976.
- Anderson, W. T., et al., "Variable Conductance Heat Pipe Technology - Research Project Resulting in Heat Pipe Experience on OAO-3 Satellite," NASA CR-114750, 1974.
- Anderson, W. T., "Hydrogen Evolution in Nickel-Water Heat Pipes," AIAA Paper 73-726, July 1973.
- Tower, L. K. and Kaufman, W. B., "Accelerated Life Tests of Specimen Heat Pipe From Communication Technology Satellite (CTS) Project," NASA TM-73846, 1977.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 1. - INDEX OF HEAT PIPESa

Heat pipe group	Heat pipe numbers	Internal configu- ration	Working fluid	Envelope material	Processing schedule
A 1,2,3 I		I	Methanol	Stainless	1
В	4,5,6	II	Methanol	Stainless	2
С	7,8,9	III	Methano1	Stainless	3
D	10,11,12	I	Ammonia Aluminum		1
E	13,14,15	II	Ammonia Aluminum		2
F	16,17,18	III	Ammonia Aluminum		3
G	19,20,21	II	Ammonia	Stainless	2

aAll wick and artery structures were stainless steal.

TABLE 2. - PROCESSING SCHEDULE NUMBER 1

Artery or wick	Envelope
Cut, form wick Cut screen, clean ^a	Machine end caps Solvent clean caps
Form, weld artery Attach artery cap	Al caps, anneal Stainless caps, weld fill tube Caps, clean ^a
Clean artery ^a Bubble test artery	Tubes, cleana, groove, cut to length Tubes, cleana
Seal artery Spot arteries to wick	
Clean assembly ^a Vacuum fire, Al pipes only, $1000^{\rm o}$ C, 1 hr	

Insert wick in pipe, weld end caps
Stainless pipes, vacuum fire 1000°C, 1 hr
Stainless pipes, pressure test
Helium leak check
Process and fill^b, c
Functional test
Closure and leak test

Vacuum bake 15 min at 100° C after ^aUltrasonic clean in FREON, acetone, then hexane. each clean, store.

by accuum bake heat pipe 160° C, 12 hr. For Al pipes: Vacuum bake transfer lines, reservoir 30 min at 70° C. Charge reservoir, rebake lines, transfer fluid to Reflux 125° C, 4 hr, dump. Transfer final charge, reflex 80° C, 2 hr, Stainless pipes: bake transfer lines, reservoir 105° C, 13 hr, final charge the pipe. pipe. burp.

CAmmonia of 99,998 vol. % purity, distilled into charge reservoir. Methanol, spectroscopic grade with less than 0.05% moisture.

TABLE 3. - PROCESSING SCHEDULE NUMBER 2

AND ADDRESS OF THE PARTY OF THE	
Artery or wick Fabricate assembly	Envelope Machine in water soluble oil
30 min wash in 25% HNO ₃ Rinse in cold tap water Rinse in distilled water Outgas at 250° to 275° C 8 hr at 10 ⁻⁵ mm Hg	Anneal stainless end plugs only, 815°C Flush in tap water Flush in distilled water Al tubes, etch ^a
	Check residue, repeat flushes ^b if needed Outgas 250° to 275° C 8 hr at 10 ⁻⁵ mm Hg
Pull wick into heat pipe using isopropanol lubricant Remove isopropanol, purge with argon	propanol lubricant
TIG weld end plugs Charge working fluid ^C , agitate 5 min and dump, three times	in and dump, three times
Charge to 50% free internal volume, reflux 5 days at 150° F, dump Charge with small overload, reflux 3 days at 65° C	, reflux 5 days at 150° F, dump 3 days at 65° C
Purge noncondensible gas, adjust charge Pinch off, weld, leak test	harge

 a_b Tri-acid etch solution (CrO₃,HNO₃,H₂SO₄) 5 min. Repeat water flush. Flush with 2-propanol. Stainless, water flush. Al, 2-propanol flush in addition.

^cAmmonia processed after receipt to 99.99% purity, 7 ppm $\rm H_2O$, 10 ppm nonvolatile. Methanol was 99.9% pure, with 0.02% $\rm H_2O$, 0.0001% nonvolatile material.

TABLE 4. - PROCESSING SCHEDULE NUMBER 3

Artery or wick

Passivate screen

Wachine

Wrap screen

Priming test

Fabricate retainers

Weld assembly

Repeat priming test

Pull arteries into pipe
Weld end caps and fill tube
Water test to 1.4×10⁷ N/m², 5 min
Bake out in vacuum
Al pipes, 175° C, 2 hr
Stainless pipes, 315° C, 4 hr
Charge with unprocessed charge, reflux 12 hr, dump
Evacuate final charge with processed ammonia or unprocessed methanol
Check noncondensible gas, thermal test, pinch off

^aPassivation of stainless includes cleaning, immersion in nitric acid or a dichromate, rinse, dry.

bDeoxidation of aluminum pipes includes brush scrubbing with solvent, several dips in solvent, dip in alkaline cleaner, rinse in water, immersion in chromate deoxidizer, rinse in tap water, dry in filtered air, flush in isopropanol, dry in heated N₂, and bagging or capping.

CAmmonia, ultrahigh purity 99.999%, processed by several freeze-thaw cycles. Methanol, 99.9% pure.

TABLE 5. - NONCONDENSIBLE GAS IN METHANOL HEAT PIPES AT VARIOUS TIMES

Heat pipe group	Heat pipe number	Gas at start of testing, g mol	Gas at t	ime T ₁	Gas at time T ₂		
			g mol	T ₁ ,	g mol	T ₂ ,	
Λ	1	0	0	4330	0	12 290	
	2	0	0	4330	0	11 856	
	3	0	0	4240	0	12 420	
В	4	0	(a)	4390	9.0×10 ⁻⁵	12 480	
	5	(a)	(a)	4330	10.0×10 ⁻⁵	12 414	
	6	0	(a)	4230	7.0×10 ⁻⁵	12 090	
С	7	(a)	(a)	4370	3.6×10 ⁻⁵	12 680	
	8	0	0	4260	5.2×10 ⁻⁵	11 040	
	9	0	0	4230	1.6×10 ⁻⁵	12 290	

aGas present, amount not determined.

TABLE 6. - NONCONDENSIBLE GAS IN AMMONIA HEAT PIPES AT

VARIOUS TIMES

Heat pipe	Heat pipe number	Gas at start of testing, g mol	Gas at time T ₁		Gas at time T ₂	
group			g mol	T ₁ ,	g mol	T ₂ , hr
D	10	3.8×10 ⁻⁴	7.3×10 ⁻⁴	4 390	10.1×10 ⁻⁴	14 220
	11	6.0×10 ⁻⁴	10.2×10-4	10 100	9.4×10 ⁻⁴	14 280
	12	0			4.4×10 ⁻⁴	12 158
Е	13	0	1.7×10 ⁻⁴	10 046	1.3×10 ⁻⁴	14 405
	14	0	0	4 592	0	13 794
	15	0	0	4 600	3.3×10 ⁻⁴	14 136
F	16	0	0	9 880	0	14 347
	17	0	0	9 739	0	14 360
	18	0	0	10 808	0	14 415
G	19	0	0	2 598	0	13 032
	20	0	0	7 919	0	12 587
	21	0	0	9 686	1.5×10 ⁻⁴	14 398

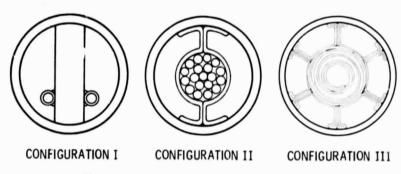


Figure 1. - Internal configurations of the pipes.

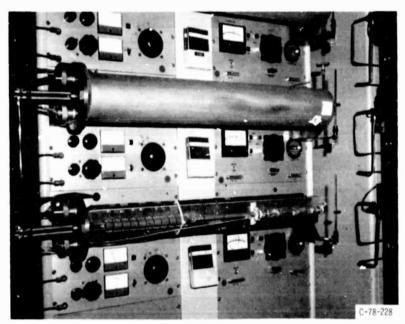
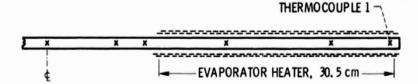



Figure 2. - View of test facility showing one pipe with heat extractor and evaporator heater installed, the other pipe inclosed in vacuum chamber.

Figure 3. - Evaporator heater assembly with annular conduction sleeve withdrawn from heater.

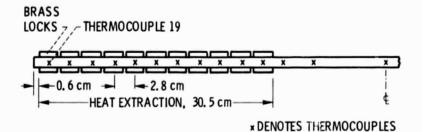


Figure 4. - Thermocouple locations:

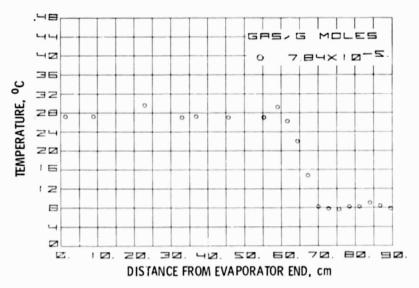


Figure 5. - Temperature profile for pipe 6, showing noncondensible gas heater power, 12 watts.

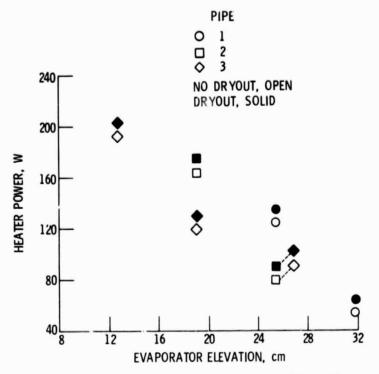


Figure 6. - Maximum heater power without dryout for methanol pipes of group A. Adiabatic temperature above 50° C.

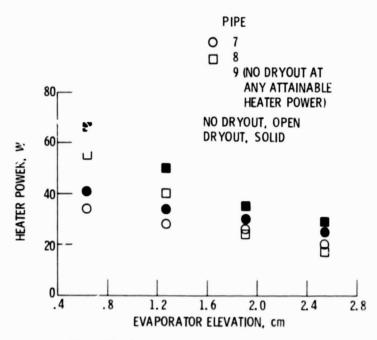
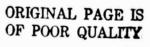
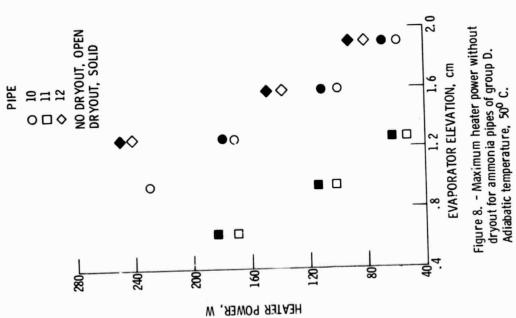




Figure 7. - Maximum heater power without dryout for methanol pipes of group C. Adiabatic temperature above 500 C.

м ,язмоч язтазн

13

NO DRYOUT, OPEN DRYOUT, SOLID

0

8

8

28

Figure 9. - Maximum heater power without dryout for ammonia pipes of group E. Adiabatic temperature, 50° C.

EVAPORATOR ELEVATION, CM

횩

8



Figure 10. - Maximum heater power without dryout for ammonia pipes of group F. Adiabatic temperature, 50° C.

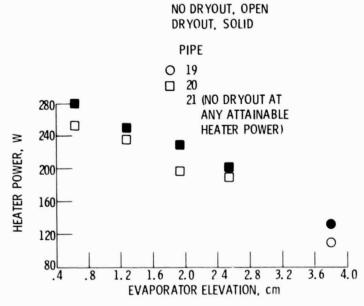


Figure 11. - Maximum heater power without dryout for ammonia pipes of group G. Adiabatic temperature above 50° C.

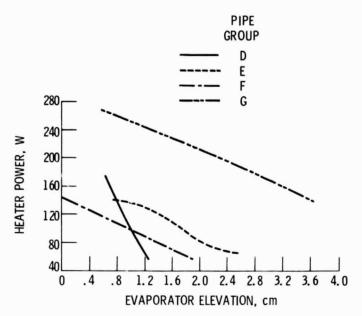


Figure 12. - Envelopes of maximum heater power without dryout for ammonia pipes of groups D, E, F, and G.