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Extended defects in the Potts-percolation model of a solid: Renormalization group
and Monte Carlo analysis

H. T. Diep1,* and Miron Kaufman2

1Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise–CNRS, UMR 8089 2, Avenue Adolphe Chauvin,
95302 Cergy-Pontoise Cedex, France

2Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
�Received 17 May 2009; published 14 September 2009�

We extend the model of a 2d solid to include a line of defects. Neighboring atoms on the defect line are
connected by springs of different strength and different cohesive energy with respect to the rest of the system.
Using the Migdal-Kadanoff renormalization group we show that the elastic energy is an irrelevant field at the
bulk critical point. For zero elastic energy this model reduces to the Potts model. By using Monte Carlo
simulations of the three- and four-state Potts model on a square lattice with a line of defects, we confirm the
renormalization-group prediction that for a defect interaction larger than the bulk interaction the order param-
eter of the defect line changes discontinuously while the defect energy varies continuously as a function of
temperature at the bulk critical temperature.

DOI: 10.1103/PhysRevE.80.031116 PACS number�s�: 64.60.�i, 05.10.Ln, 05.10.Cc, 62.20.�x

I. INTRODUCTION

Thermodynamics of solids with defects is a topic of cur-
rent interest �1,2�. In this paper we expand an equilibrium
statistical mechanics model �3� of a solid to include extended
defects. Previously we used �4� the realistic anharmonic en-
ergy versus atomic distance developed by Ferrante and Smith
�5� in a mean-field-type computation. We then evaluated �6�
the role of thermal fluctuations by using renormalization-
group and Monte Carlo simulations.

In our model described in Sec. II, the solid is constituted
of harmonic springs. If the energy of such a spring is larger
than a threshold, the spring is likely to fail �7�. In the limit of
zero elastic energy the model reduces to the Potts model �8�,
which has been used to describe correlated and uncorrelated
percolation processes �9–12�.

In Sec. III we present phase diagrams based on the
renormalization-group Migdal-Kadanoff scheme. This
scheme is of course an approximation for models on regular
lattices but as demonstrated by Berker and Ostlund �13� it is
exact for hierarchical lattices. This latter feature and its sim-
plicity make the Migdal-Kadanoff scheme quite popular
�14–19�. We analyze the stability of fixed points and find that
the elastic energy is an irrelevant field in the
renormalization-group sense. For this reason, in Sec. IV we
report Monte Carlo simulations of the model with zero elas-
tic energy, i.e., Potts model on a square lattice with a defect
line. Our goal is to verify the renormalization-group predic-
tion �20� that for q=3,4, on the defect line, at the bulk criti-
cal temperature, the order parameter jumps discontinuously
from zero �high temperature phase� to a nonzero value �low
temperature phase� while the energy varies continuously
with temperature. This is interesting since for those q values
the bulk transition is continuous. It was argued �20� that this
unusual 1d defect transition is due to the infinite range cor-
relations at the bulk critical point. It resembles the Thouless

transition �21,22� in a one-dimensional system with inverse
squared distance decaying interactions. A scaling theory of
this defect transition has also been proposed �23�. Our con-
cluding remarks are found in Sec. V.

II. MODEL

The solid is made of “springs” some of which are alive
and some are failed upon thermal excitations. All processes
are assumed to be reversible, unlike the work of Beale and
Srolovitz �24� where springs fail irreversibly. The energy of a
spring �i , j� is given by the Hooke law,

Hij = − EC +
k

2
�r�i − r� j�2, �1�

where r�i is the displacement vector from the equilibrium po-
sition of atom i, EC is the cohesive energy, k is elastic con-
stant, and a is the equilibrium lattice spacing. If the energy of
the spring is larger than the threshold energy E0 the spring is
more likely to fail than to be alive. p is the probability that
the spring is alive and 1− p the probability that the spring
breaks. We assume its dependence on energy to be given by
the Boltzmann weight,

p

1 − p
= e−�H−E0�/kBT = we−K/2�r�i − r�j�

2
, �2�

where K=k /kBT and w=e�EC+E0�/kBT.
For the extended line of defects the elastic, cohesive, and

threshold energies may take values different from the rest of
the system. Hence, while in the bulk the parameters are K
and w; on the line of defects they are Kd and wd.

We allow for correlations between failing events by using
the Potts number of states q, which plays the role of a fugac-
ity controlling the number of clusters. For q=1 we have ran-
dom percolation as springs fail independently. When com-
paring configurations that have the same number of live
springs B, the configuration with higher number of clusters C
is more probable if q�1 and less probable if q�1. The*Corresponding author; diep@u-cergy.fr

PHYSICAL REVIEW E 80, 031116 �2009�

1539-3755/2009/80�3�/031116�7� ©2009 The American Physical Society031116-1

http://dx.doi.org/10.1103/PhysRevE.80.031116


partition function is a sum over all possible configurations of
“live” springs:

Z = �
config

qcwBZelastic
config. �3�

C is the number of clusters, including single site clusters, and
B is the number of live springs. The restricted partition func-
tion associated with the elastic energy for a given configura-
tion of bonds �live springs� is

Zelastic
config = Trr e−Helastic/kBT, �4�

−
Helastic

kBT
= �

�i,j�

K

2
�r�i − r� j�2. �5�

In Eq. �5� the sum is over all live springs.
By using the Kasteleyn-Fortuin expansion �25� for Potts

model we can rewrite the partition function as

Z = Tr� Trr e−H/kBT. �6�

The Hamiltonian is

−
H

kBT
= �

�i,j�
�J1���i,� j� −

J2

2
���i,� j��r�i − r� j�2	

+ �
�i,j�defect

�J1d���i,� j� −
J2d

2
���i,� j��r�i − r� j�2	 ,

�7�

where �i is a Potts spin taking q values. This mapping is a
Gaussian approximation valid when, on the right-hand side
of Eq. �7�, the elastic energy is small compared to the first
energy contribution. In our Monte Carlo simulations, we use
the Hamiltonian in Eq. �7� for integer values of q. The cou-
pling constants J1 and J2 are related to the original param-
eters, w and K, as follows:

J1 = ln�1 + w� , �8�

J2 = K
w

w + 1
, �9�

J1d = ln�1 + wd� , �10�

J2d = Kd
wd

wd + 1
. �11�

Compressible Ising models, with Hamiltonians somewhat
similar to Eq. �7�, have been reviewed by Landau et al. �26�.

III. RENORMALIZATION GROUP

The Migdal-Kadanoff recursion equations �27,28� for two
dimensions are obtained by assuming that each atom coordi-
nate varies in the interval �−1 /2, 1/2�, where the equilibrium
lattice constant is 1, and also using the Gaussian approxima-
tion �small elastic energy�:

w� = �1 + U�w,K,q��2 − 1, �12�

K�w� = K�1 + U�w,K,q��U�w,K,q� , �13�

wd� = �1 + U�w,K,q���1 + U�wd,Kd,q�� − 1, �14�

Kd�wd� =
1

2
Kd�1 + U�w,K,q��U�wd,Kd,q�

+
1

2
K�1 + U�wd,Kd,q��U�w,K,q� , �15�

where

U�w,K,q� =
w2 erf�
K/4�

q
K/� + 
8w erf�
K/8�
. �16�

The above recursion equations represent the Gaussian ap-
proximation of the exact solutions for hierarchical lattices.
The renormalization-group flows in the bulk parameter space
�w ,K� are governed by the following fixed points at K=0
�pure Potts model�:

�i� w=0 �nonpercolating live springs�;
�ii� w=� �percolating network of live springs�;
�iii� w=wc �Potts critical point�.
A stability analysis at the bulk Potts critical point �K

=0, w=wc� yields the following two eigenvalues:
�i� the thermal eigenvalue: �1 �for the direction along the

K=0 axis� is always larger than 1, meaning the w−wc is a
relevant field;

�ii� the other eigenvalue associated with the flow along
the w=wc line away from the pure model �K=0� is �2�1
for all q. This means that there is a line of points in the
�w ,K� flowing into, and thus is in the same universality class
as, the pure Potts critical point �wc ,0�.

The bulk phase diagram �Fig. 1�, for any given q, in the
�w ,K� plane shows two phases: �1� “crumbling” solid with
many failed springs and �2� solid with mostly live springs.
The two phases are separated by a critical line in the univer-
sality class of the q-state Potts model.

The defect fixed points are obtained from Eqs. �14� and
�15� after setting the bulk fields w and K at their fixed point
values �bulk material is critical�: w=wc, K=0. All the fixed

1 2 3 4 5

I II

w

2

3

4

5

0
0

1

K

FIG. 1. Bulk phase diagram for q=10 in the plane �w ,K�. Potts
critical line separates phase �i� with many failed springs from phase
�II� with many live springs.
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points are obtained for Kd=0. We find fixed points at wd
=� and at wd=wc for all q. For q�q1=3 a third fixed point
emerges from the one at wd=� at wd=w�. At q=q2=6.8
�when exponent 	=0� the two finite wd fixed points ex-
change position.

The stability of the fixed points for perturbations of the
defect fields �wd ,Kd� is determined by the following:

�i� the eigenvalue �wd governing flow along Kd=0 axis is
larger than unity �i.e., relevant perturbation� at the fixed point
Kd=0, wd=max�wc ,w�� and is less than unity �i.e., irrelevant
perturbation� at the fixed point Kd=0, wd=min�wc ,w�� �Fig.
2�;

�ii� the eigenvalue �Kd�1 for all fixed points �Fig. 3�.
The defect phase diagram �Fig. 4� represented in the plane

�wd ,Kd� is obtained for the bulk fields at their critical values:
w=wc, K=0. The plane �wd ,Kd� is divided in two regions by
a critical line that flows into the fixed point: wd
=max�wc ,w��, Kd=0. To the right of it �large wd�, the live
springs on the defect line are percolating, i.e., the Potts order
parameter is nonzero on the defect line even though in the
bulk it is zero. All points in that region flow to the fixed point
wd=�, Kd=0. The phase to the left of the critical line �small
wd� is governed by the fixed point at wd=min�wc ,w��, Kd
=0.

Since the elastic energy is irrelevant renormalization
group �RG� field, we concentrate next on the K=Kd=0 case.

The RG analysis �20� of this problem �two-dimensional Potts
model with a defect line� predicts for 2�q
4 a hybrid
phase transition on the defect line: discontinuous order pa-
rameter and continuous energy. The defect crossover expo-
nent is �29� �=1−�, so �=0 with continuously varying
defect exponents in the q=2 case �for hierarchical lattice this
is q=6.8�, while for q�2 the crossover exponent is positive,
signaling crossovers to other universality classes: hybrid
�discontinuous� transition for strong defect coupling and new
universality class for weak defect coupling.

IV. MONTE CARLO SIMULATIONS

In this section since we set the elastic couplings to zero in
Eq. �7�, we perform MC simulation of the Hamiltonian

−
H

kBT
= J�

�i,j�
���i,� j� + Jd �

�i,j�defect

���i,� j� , �17�

where J is the interaction parameter between the bulk nearest
neighbors �NN� and Jd is that between two NN on the defect
line �J is equal to J1 of Eq. �8�, and Jd is J1d of Eq. �10��.

We consider a square lattice of size NxNy where Nx
=80,120,160,200, . . . ,1920 and Ny =40,60,80. Each lattice
site is occupied by a q-state Potts spin. We place the defect
line at the middle of the y side of the sample, i.e., y=Ny /2.
The length of the defect line is thus Nx. The reason why we
use a very long length for the defect line stems from the fact
that the determination of a transition in a linear chain needs
large enough sizes to avoid statistical fluctuations. We use
periodic boundary conditions.

Our purpose here is to test the following RG prediction of
the previous section: at the bulk transition temperature Tc,
the defect line undergoes a phase transition where its order
parameter is discontinuous but its energy is continuous. The
bulk transition temperature is the temperature at which the
phase transition of the system without the defect line takes
place.

Let us consider the case where q=4. The critical tempera-
ture is given by the exact formula �kBTc /J�−1=ln�1+
q�.

q

q
1 2

11.0

1.2

1.4 q

0.6

2 4 6 8 10

0.8

Λwd

FIG. 2. Renormalization-group eigenvalue �wd vs q: solid line
at defect critical fixed point; dotted-dashed line at the percolating
critical fixed point; dashed line at the nonpercolating fixed point.
Two vertical lines are q1=3 and q2=6.8 �see text for comments�.

q

K
0.6

0.4

0.8

2 4 6 8 10

q q
1 2

Λ

0.2

d

FIG. 3. Renormalization-group eigenvalue �Kd vs q: solid line
at defect critical fixed point; dashed-dotted line at the percolating
critical fixed point; dashed line at the nonpercolating fixed point.
Since these eigenvalues are less than unity, the elastic energy is an
irrelevant field at the three fixed points. Two vertical lines are q1

=3 and q2=6.8 �see text for comments�.

I II
K

w0 4 8 12 16 20
0

1

2

3

4

5

d

d

FIG. 4. Phase diagram at w=wc, K=0 in plane �wd ,Kd�. The two
critical phases �infinite correlation length� are separated by a defect
critical line. In the small wd phase �I� there is zero probability for
percolation on the defect line, while in the large wd phase �II� there
is a finite probability for percolation on the defect line.
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With q=4, one has Tc�0.910 239 in units of J /kB. Note that
this value of Tc corresponds to the thermodynamic limit, i.e.,
infinite system size. In MC simulation, we work at finite
sizes, so for each size we have to determine the “pseudo”
transition which corresponds in general to the maximum of
the specific heat or of the susceptibility. The maxima of these
quantities need not to be at the same temperature. Only at the
infinite size, they should coincide. The theory of finite-size
scaling permits to deduce properties of a system at its ther-
modynamic limit. We have used in this work a size large
enough to reproduce the bulk transition temperature up to the
fourth decimal.

In order to determine the nature of the phase transition of
the defect line, we shall use the histogram technique �30�
which is known to allow us to distinguish with accuracy the
order of the phase transition.

The simulation is carried out as follows. We fix J=1 here-
after. For each value of Jd, using first the standard Metropolis

MC method �31� we equilibrate the system of a given size
NxNy at a given temperature T during 106 Monte Carlo
sweeps �MCS� per spin before averaging physical quantities
over the next 2106 MCS. We determine the transition tem-
perature at the given size NxNy by examining the calcu-
lated physical quantities such as the internal energy per spin
E, the specific heat Cv per spin, the Potts order parameter Q,
and the susceptibility per spin �. For the bulk q-state Potts
model, Q is defined as

Q =
q max�Q1,Q2, . . . ,Qq� − 1

q − 1
, �18�

where Qi=ni / �NxNy� �i=1, . . . ,q�, ni being the number of
sites having qi. For the defect line, the order parameter Qd is
similarly defined on the defect line, namely,

Qd =
q max�Q1�,Q2�, . . . ,Qq�� − 1

q − 1
, �19�

where Qi�=ni� /Nx �i=1, . . . ,q�, ni� being the number of sites
on the defect line having qi.

Let us show first in Fig. 5 the energy and the specific heat
of the case without defects where the bulk critical tempera-
ture is Tc�0.9103 for q=4 with the size used here �the exact
value of Tc is 0.910 239�. The energy of the defect line is
shown in Fig. 6.
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FIG. 5. Case without defects: energy per spin E �upper curve�
and specific heat per spin Cv �lower curve; line is a guide for the
eyes� vs temperature T for q=4, with Nx=1920, Ny =60, and Jd

=J=1.

0.940.90.860.82

dE
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−1.25
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−1.35
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T
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FIG. 6. Energy per spin Ed of the defect line vs temperature T
for q=4, Jd=1.6 with Nx=1920, Ny =60 and J=1. Note that Ed is
continuous at Tc. See text for comments.
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FIG. 7. Order parameters Qd of the defect line for Jd=2 �upper
curve with black circles�, Jd=1.6 �middle curve with void circles�
and bulk order parameter Q �lower curve with crosses� vs tempera-
ture T for q=4 with Nx=1920, Ny =60, and J=1. Note that Qd is
discontinuous at Tc. See text for comments.
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FIG. 8. Energy histogram of the defect line taken at Tc for q
=4, Jd=1.6 with Nx=1920, Ny =60, and J=1. See text for
comments.
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The order parameters of the bulk and of the defect line are
shown in Fig. 7 for q=4, J=1 and Jd=1.6 and 2.

These figures show that at the “bulk” phase transition
temperature Tc=0.9103, while the defect energy is continu-
ous, the order parameter of the defect line undergoes a ver-
tical fall, indicating a discontinuity predicted by the RG
analysis shown in the previous section. For large values of
Jd, for instance Jd=2, the defect line takes a very long time
to become disordered for T slightly larger than Tc. Several
million MC sweeps are necessary.

In order to check the behaviors of Ed and Qd at Tc, we
have calculated the defect energy histogram not only at Tc
but also in the temperature region around Tc. As it turned out,
we observe only a Gaussian distribution of Ed �see Fig. 8
confirming the absence of discontinuity of Ed�. Note that if
the energy is discontinuous, its histogram should show a
double-peak structure, not a Gaussian one.

We have also established a histogram for Qd in the fol-
lowing manner. We divided the interval between 0 and 1 into
Nx intervals. At each MC sweep, we added 1 in the interval
corresponding to the value of Qd. In doing so for 2 million
MC sweeps, we obtained a histogram for Qd which is shown
in Fig. 9 at Tc. As seen, we have a double-peak distribution
of Qd indicating that during the time the defect line can have
both the ordered and disordered phases. This is a strong sig-
nature of the discontinuity of Qd.

Note that the size effects for Ny =40, 60, 80, and 100 are
not significant and are included in the error estimation.
Simulations have been carried out also for other values of Jd
between 1.2 and 4. The results show the same aspects as
those shown above with Jd=1.6.

Now, let us examine the case where q=3. The results are
very similar to the case q=4 shown above. So the conjecture
of the RG analysis where the transition of the defect line is of
first order for Jq�J at Tc for q�2 is verified here. Figure 10
shows the defect order parameter Qd versus T for q=3 with
several values of Jd. Note that Tc=0.9949 for q=3.

Let us show in Fig. 11 the value of Qd taken at Tc as a
function of Jd. As seen, the gap is increased with increasing
Jd.

At this stage, it is worth to mention that due to the usual
finite-size effect, the order parameters Q and Qd do not van-
ish above Tc: a finite tail exists and decreases with increasing
lattice size. For Q, the transition point is, in simulations,
taken at the change of curvature of Q, i.e., at the maximum
of the corresponding susceptibility. As for Qd, due to its dis-
continuity at Tc, the values shown in Fig. 11 are the upper
one at Tc. For clarity, the error bars are not shown there, but
it is on the second digit, for instance Qd=0.880�0.020 for
Jd=1.6.

We show now the time dependence of the order parameter
Qd and the energy. Figures 12 and 13 show these quantities
for Jd=2 at Tc=0.9949 and at a temperature slightly above
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10.80.60.40.20
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FIG. 9. Histogram of the order parameter Qd taken at Tc for q
=4, Jd=1.6 with Nx=1920, Ny =60, and J=1. Note the double-peak
structure indicating that Qd is discontinuous at Tc. See text for
comments.
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FIG. 10. Order parameters Qd of the defect line for Jd=2 �upper
curve with black circles�, Jd=1.4 �middle curve with void circles�
and bulk order parameter Q �lower curve with black squares� vs
temperature T for q=3 with Nx=1920, Ny =60, and J=1. Note that
Qd is discontinuous at Tc. See text for comments.
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FIG. 11. Value of the order parameter Qd taken at Tc versus Jd

for q=4 �upper curve� and q=3 �lower curve� with Nx=1920, Ny

=60, and J=1. Lines are guides for the eyes.
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FIG. 12. Time dependence of the energy per spin of the defect
line for q=3 with Jd=2 at Tc=0.9949 and at T=1. From the bottom:
heating to Tc, cooling to Tc, heating to T=1, cooling to T=1. See
text for comments.
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Tc, namely, T=1. Two procedures have been used: �i� heat-
ing, i.e., using the ordered phase �F� as initial spin state; �ii�
cooling, i.e., using a paramagnetic state �P� as initial condi-
tion. We discuss first the energy case. At Tc, heating from the
F state �bottom curve in Fig. 12� and cooling from the P state
�second curve from the bottom in Fig. 12� give the same
energy only after two million MC steps/spin �see the first
million MC steps in Fig. 12�. At T=1, one needs almost the
same MC time to get the same energy for the heating and
cooling �curves 3 and 4 from the bottom in Fig. 12�.

The time dependence of Qd is interesting �Fig. 13�:
�i� At Tc, Qd with F condition stays stable �first curve from

top in Fig. 13� and reaches the stationary value 0.88 at two
million MC steps/spin. This means that the defect line is
ordered at Tc while the bulk spins are disordered. However,
when cooled from the P state �third curve from the top�, Qd
stays very small �disordered state�. We conclude that at Tc
there are two possible values of Qd for the same energy. This
explains the gap of Qd at Tc shown earlier.

�ii� At T=1, slightly above Tc, Qd takes a long time
��500 000 MC step/spin� to become disordered in the heat-
ing procedure �second curve from the top� while it is disor-
dered all the way in the cooling procedure.

Let us discuss more about the discontinuity of the order
parameter Qd at Tc. In a standard first-order transition, the
ordered and disordered phases coexist at Tc yielding a dis-
continuity in both energy and order parameter. In the case
studied here, only Qd is discontinuous, while Ed is not. Thus,
there is no double-peak energy distribution. To answer the
question how Qd can take two values at Tc, we have exam-
ined the snapshots of the defect line taken during the simu-
lation time. Interesting enough, we observed configurations
schematically of the types:

�i� 111111..1111111..111111.. where dots indicate Potts
values other than 1 �same kind of ordered segments sepa-
rated by disordered portions�;

�ii� 111111..3333333..222222.. �random ordered segments
separated by disordered portions�.

It is obvious that these configurations give the same en-
ergy if the number of disordered portions is the same, while
Qd is different: the first configuration yields a large value of
Qd and the second a zero one. This observation explains why
at Tc the energy is continuous but the order parameter is not.

The phase transition observed here for the defect line is
very interesting in several aspects:

�i� the nature of the transition is novel in the sense that
only the defect order parameter is discontinuous, not the de-
fect energy, nor the bulk order parameter and bulk energy;

�ii� note that long-range interaction in one dimension can
cause a first-order transition �32,33�, while systems with
short-range interaction do not show such a phase transition.
The present defect line with NN interaction shows thus an
exception. We believe that its immersion in disordered neigh-
boring lines at Tc plays a key role in provoking such a
pseudodiscontinuous transition.

V. CONCLUSIONS

In this paper we have studied a model of a two-
dimensional solid with an extended defect line using the
Migdal-Kadanoff renormalization group. Since the elastic
energy turns out to be an irrelevant field, we then studied this
model for zero elastic energy, i.e., 2d Potts model with a
defect line, using Monte Carlo simulations. The
renormalization-group analysis of the Potts model on a 2d
hierarchical lattice with a defect line suggests an interesting
behavior at the bulk transition Tc if the interaction on the
defect line Jd is larger than the bulk interaction J: the order
parameter of the defect line should undergo a discontinuity at
Tc while the energy is continuous. Our Monte Carlo simula-
tions of the three- and four-state Potts model on the square
lattice with a defect line confirm the RG prediction.

To conclude, we would like to emphasize two points of
interest. First, the existence of a phase transition in a one-
dimensional system �defect line� is rare. It is induced by the
bulk infinite correlations at criticality. Second, the nature of
the phase transition is unusual in the sense that the order
parameter is discontinuous while the energy is not. This is
somewhat similar to the Thouless transition �21� in 1d mod-
els with long-range interactions.
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