18,460 research outputs found
Eyelid development, fusion and subsequent reopening in the mouse
The process of eyelid development was studied in the mouse. The critical events occur between about 15.5 d postcoitum (p.c.) and 12 d after birth, and were studied by conventional histology and by scanning electron microscopy. At about 15.5 d p.c. the cornea of the eye is clearly visible with the primitive eyelids being represented by protruding ridges of epithelium at its periphery. Over the next 24 h, eyelid development proceeds to the stage when the cornea is completely covered by the fused eyelids. Periderm cells stream in to fill the gap between the developing eyelids. Their proliferative activity is such that they produce a cellular excrescence on the outer surface of the line of fusion of the eyelids. This excrescence had almost disappeared by about 17.5 d p.c. Keratinisation is first evident at this stage on the surface of the eyelids and passes continuously from one eyelid to the other. Evidence of epidermal differentiation is more clearly seen in the newborn, where a distinctive stratum granulosum now occupies about one third of its entire thickness. Within the subjacent dermis, hair follicles are differentiating. By about 5 d after birth, a thick layer of keratin extends without interruption across the junctional region. While a noticeable surface indentation overlies the latter, a similar depression is only seen on the conjunctival surface by about 10 d after birth. Keratinisation is also observed to extend in from the epidermal surface to involve the entire region between the 2 eyelids at about this time.(ABSTRACT TRUNCATED AT 250 WORDS
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection
The effects of leading edge and downstream film cooling on turbine vane heat transfer
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils
Turbine airfoil film cooling
The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling
Radio-frequency dressing of multiple Feshbach resonances
We demonstrate and theoretically analyze the dressing of several proximate
Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present
accurate measurements and characterizations of the resonances, and the dramatic
changes in scattering properties that can arise through the rf dressing. Our
scattering theory analysis yields quantitative agreement with the experimental
data. We also present a simple interpretation of our results in terms of
rf-coupled bound states interacting with the collision threshold.Comment: 4+ pages, 3 figures, 1 table; revised introduction & references to
reflect published versio
Magnetic models on Apollonian networks
Thermodynamic and magnetic properties of Ising models defined on the
triangular Apollonian network are investigated. This and other similar networks
are inspired by the problem of covering an Euclidian domain with circles of
maximal radii. Maps for the thermodynamic functions in two subsequent
generations of the construction of the network are obtained by formulating the
problem in terms of transfer matrices. Numerical iteration of this set of maps
leads to exact values for the thermodynamic properties of the model. Different
choices for the coupling constants between only nearest neighbors along the
lattice are taken into account. For both ferromagnetic and anti-ferromagnetic
constants, long range magnetic ordering is obtained. With exception of a size
dependent effective critical behavior of the correlation length, no evidence of
asymptotic criticality was detected.Comment: 21 pages, 5 figure
Biochemical studies of the tracheobronchial epithelium.
Tracheobronchial epithelium has been a focus of intense investigation in the field of chemical carcinogenesis. We have reviewed some biochemical investigations that have evolved through linkage with carcinogenesis research. These areas of investigation have included kinetics of carcinogen metabolism, identification of carcinogen metabolites, levels of carcinogen binding to DNA, and analysis of carcinogen-DNA adducts. Such studies appear to have provided a reasonable explanation for the susceptibilities of the respiratory tracts of rats and hamsters to carcinogenesis by benzo(a)pyrene. Coinciding with the attempts to understand the initiation of carcinogenesis in the respiratory tract has also been a major thrust aimed at effecting its prevention both in humans and in animal models for human bronchogenic carcinoma. These studies have concerned the effects of derivatives of vitamin A (retinoids) and their influence on normal cell biology and biochemistry of this tissue. Recent investigations have included the effects of retinoid deficiency on the synthesis of RNA and the identification of RNA species associated with this biological state, and also have included the effects of retinoids on the synthesis of mucus-related glycoproteins. Tracheal organ cultures from retinoid-deficient hamsters have been used successfully to indicate the potency of synthetic retinoids by monitoring the reversal of squamous metaplasia. Techniques applied to this tissue have also served to elucidate features of the metabolism of retinoic acid using high pressure liquid chromatography. In brief, formidable strides have been made in biochemistry specific to this important target tissue, despite the inability to acquire tracheobronchial epithelium in large quantities
Post-modernism's use and abuse of Nietzsche
I focus on Nietzsche's architectural metaphor of self-construction in arguing for the claim that postmodern readings of Nietzsche misunderstand his various attacks on dogmatic philosophy as paving the way for acceptance of a self characterized by fundamental disunity. Nietzsche's attack on essentialist dogmatic metaphysics is a call to engage in a purposive self-creation under a unifying will, a will that possesses the strength to reinterpret history as a pathway to "the problem that we are". Nietzsche agrees with the postmodernists that unity is not a pre-given, however he would disavow their rejection of unity as a goal. Where the postmodernists celebrate "the death of the subject" Nietzsche rejects this valorization of disunity as a form of Nihilism and prescribes the creation of a genuine unified subjectivity to those few capable of such a goal. Postmodernists are nearer Nietzsche's idea of the Last Man than his idea of the Overman.Articl
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
- …