28 research outputs found

    Extremely Red Objects in the Field of QSO 1213-0017: A Galaxy Concentration at z=1.31

    Get PDF
    We have discovered a concentration of extremely red objects (EROs; R-K>6) in the field of the z=2.69 quasar QSO 1213-0017 (UM 485), which is significantly overabundant compared to the field ERO surface density. The optical/near-IR colors of the EROs and numerous other red galaxies in this field are consistent with elliptical galaxies at z=1-2. HST optical images for a subset of galaxies show regular morphologies, most of them being disky or diffuse and without any obvious evidence for interactions. Ground-based IR images show similar morphologies, indicating any dust reddening in these objects is spatially uniform. Optical spectroscopy with the W. M. Keck Telescope has found that four of the red galaxies lie at =1.31, and a fifth lies in the foreground at z=1.20. Of the =1.31 galaxies, one is a reddened AGN while the remaining three have rest-frame UV absorption-line spectra characteristic of old (few Gyr) stellar populations, similar to the old red galaxy LBDS 53W091 at z=1.55. Including the MgII absorber seen in the QSO spectrum, we find five galaxies at =1.31 spread over 1.5 h_50^{-1} Mpc on the sky. These results suggest we have discovered a coherent structure of old galaxies at high-redshift, possibly associated with a massive galaxy cluster.Comment: 37 pages including 11 Postscript figures. To appear in the June 2000 issue of the Astronomical Journa

    Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX

    Get PDF
    We analyze a volume-limited sample of massive bulge-dominated galaxies with data from both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX) satellite. The galaxies have central velocity dispersions greater than 100 km/s and stellar surface mass densities that lie above the value where galaxies transition from actively star forming to passive systems. The sample is limited to redshifts 0.03<z<0.07. At these distances, the SDSS spectra sample the light from the bulge-dominated central regions of the galaxies. The GALEX NUV data provide high sensitivity to low rates of global star formation in these systems. Our sample of bulge-dominated galaxies exhibits a much larger dispersion in NUV-r colour than in optical g-r colour. Nearly all of the galaxies with bluer NUV-r colours are AGN. Both GALEX images and SDSS colour profiles demonstrate that the excess UV light is associated with an extended disk. We find that galaxies with red outer regions almost never have a young bulge or a strong AGN. Galaxies with blue outer regions have bulges and black holes that span a wide range in age and accretion rate. Galaxies with young bulges and strongly accreting black holes almost always have blue outer disks. Our suggested scenario is one in which the source of gas that builds the bulge and black hole is a low mass reservoir of cold gas in the disk.The presence of this gas is a necessary, but not sufficient condition for bulge and black hole growth. Some mechanism must transport this gas inwards in a time variable way. As the gas in the disk is converted into stars, the galaxies will turn red, but further gas infall can bring them back into the blue NUV-r sequence.(Abridged)Comment: 34 pages, 16 figures. Accepted for the GALEX special issue of ApJ

    The Diverse Properties of the Most Ultraviolet Luminous Galaxies Discovered by the Galaxy Evolution Explorer

    Get PDF
    We report on the properties of a sample of ultraviolet luminous galaxies (UVLGs) selected by matching the Galaxy Evolution Explorer (GALEX) Surveys with the Sloan Digital Sky Survey Third Data Release. Out of 25362 galaxies between 0.02x10^10 L_solar at 1530 Angstroms (observed wavelength). The properties of this population are well correlated with ultraviolet surface brightness. We find that the galaxies with low UV surface brightness are primarily large spiral systems with a mixture of old and young stellar populations, while the high surface brightness galaxies consist primarily of compact starburst systems. In terms of the behavior of surface brightness with luminosity, size with luminosity, the mass-metallicity relation, and other parameters, the compact UVLGs clearly depart from the trends established by the full sample of galaxies. The subset of compact UVLGs with the highest surface brightness (``supercompact UVLGs'') have characteristics that are remarkably similar to Lyman Break Galaxies at higher redshift. They are much more luminous than typical local ultraviolet-bright starburst galaxies and blue compact dwarf galaxies. They have metallicities that are systematically lower than normal galaxies of the same stellar mass, indicating that they are less chemically evolved. In all these respects, they are the best local analogs for Lyman Break Galaxies.Comment: Fixed error in ObjID column of Table 1. 30 pages, 12 figures. Accepted for the GALEX special issue of ApJS. Abstract abridge

    The DEEP2 Galaxy Redshift Survey: Spectral classification of galaxies at z~1

    Full text link
    We present a Principal Component Analysis (PCA)-based spectral classification, eta, for the first 5600 galaxies observed in the DEEP2 Redshift Survey. This parameter provides a very pronounced separation between absorption and emission dominated galaxy spectra - corresponding to passively evolving and actively star-forming galaxies in the survey respectively. In addition it is shown that despite the high resolution of the observed spectra, this parameter alone can be used to quite accurately reconstruct any given galaxy spectrum, suggesting there are not many `degrees of freedom' in the observed spectra of this galaxy population. It is argued that this form of classification, eta, will be particularly valuable in making future comparisons between high and low-redshift galaxy surveys for which very large spectroscopic samples are now readily available, particularly when used in conjunction with high-resolution spectral synthesis models which will be made public in the near future. We also discuss the relative advantages of this approach to distant galaxy classification compared to other methods such as colors and morphologies. Finally, we compare the classification derived here with that adopted for the 2dF Galaxy Redshift Survey and in so doing show that the two systems are very similar. This will be particularly useful in subsequent analyses when making comparisons between results from each of these surveys to study evolution in the galaxy populations and large-scale structure.Comment: 10 pages, 9 figures, Accepted for publication in Ap

    The UV-Optical Color Magnitude Diagram II: Physical Properties and Morphological Evolution On and Off of a Star-Forming Sequence

    Get PDF
    We use the UV-optical color magnitude diagram in combination with spectroscopic and photometric measurements derived from the SDSS spectroscopic sample to measure the distribution of galaxies in the local universe (z<0.25) and their physical properties as a function of specific star formation rate (SSFR) and stellar mass. Throughout this study our emphasis is on the properties of galaxies on and off of a local "star-forming sequence." We discuss how the physical characteristics of galaxies along this sequence are related to scaling relations typically derived for galaxies of different morphological types. We find, among other trends that our measure of the star formation rate surface density is nearly constant along this sequence. We discuss this result and implications for galaxies at higher redshift. For the first time, we report on measurements of the local UV luminosity function versus galaxy structural parameters as well as inclination. We also split our sample into disk-dominated and bulge-dominated subsamples using the i-band Sersic index and find that disk-dominated galaxies occupy a very tight locus in SSFR vs. stellar mass space while bulge-dominated galaxies display a much larger spread of SSFR at fixed stellar mass. A significant fraction of galaxies with SSFR and SF surface density above those on the "star-forming sequence" are bulge-dominated. We can use our derived distribution functions to ask whether a significant fraction of these galaxies may be experiencing a final episode of star formation (possibly induced by a merger or other burst), soon to be quenched, by determining whether this population can explain the growth rate of the non-star-forming galaxies on the "red sequence." (Abridged)Comment: 30 pages, 28 figures, scheduled to appear as part of the GALEX Special Ap.J.Suppl., December, 2007 (29 papers

    The First Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey has validated and made publicly available its First Data Release. This consists of 2099 square degrees of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 square degrees of this area, and tables of measured parameters from these data. The imaging data go to a depth of r ~ 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The spectra cover the range 3800--9200 A, with a resolution of 1800--2100. Further characteristics of the data are described, as are the data products themselves.Comment: Submitted to The Astronomical Journal. 16 pages. For associated documentation, see http://www.sdss.org/dr

    The Properties of Ultraviolet-Luminous Galaxies at the Current Epoch

    No full text
    We have used the first matched set of GALEX and SDSS data to investigate the properties of a sample of 74 nearby galaxies with far-ultraviolet luminosities chosen to overlap the luminosity range of typical high-z Lyman Break Galaxies (LBGs). GALEX deep surveys have shown that ultraviolet-luminous galaxies (UVLGs) similar to these are the fastest evolving component of the UV galaxy population. Model fits to the combined GALEX and SDSS photometry yield typical FUV extinctions similar to LBGs. The implied star formation rates are SFR ~ 3 to 30 solar mass per year. This overlaps the range of SFRs for LBGs. We find a strong inverse correlation between galaxy mass and far-ultraviolet surface brightness, and on this basis divide the sample into ``large\'\' and ``compact\'\' UVLGs. The compact UVLGs have half-light radii of a few kpc or less (similar to LBGs). They are relatively low mass galaxies (~10 billion solar masses) with typical velocity dispersions of 60 to 150 km/s. They span a range in metallicity from 0.3 to 1 times solar, have blue optical-UV colors, and are forming stars at a rate sufficient to build the present galaxy in ~a Gigayear. In all these respects they appear similar to the LBG population. These ``living fossils\'\' may therefore provide an opportunity for detailed investigation of the physical processes occurring in typical star forming galaxies in the early universe
    corecore