161 research outputs found

    Induction of IL 2 receptor expression and cytotoxicity of thymocytes by stimulation with TCF1

    Get PDF
    We investigated the role of T cell cytotoxicity inducing factor 1 (TCF1) in the induction of a cytotoxic T cell response. We found that help-deficient thymocyte cultures supplied with saturating amounts of purified IL 2 did not develop CTL in a 5-day culture. The expression of cytotoxicity was dependent on the addition of TCF1 derived from the T cell hybridoma K15. TCF1 also induced proliferation of thymocytes in the presence of IL 2. Only the PNA- thymocyte subpopulation responded to TCF1 with proliferation and cytotoxicity in the presence of IL 2. The monokine IL 1 also induced proliferation in this subpopulation but failed to induce cytotoxicity. IL 1 was further distinguished from TCF1 by inhibition of IL 1-induced but not TCF1-induced proliferation by anti-IL 1 antibodies. In addition, using anti-IL 2 receptor antibodies (AMT 13), we showed that TCF1 in the presence of IL 2 substantially increased IL 2 receptor expression in thymocytes. IL 1 had the same effect on induction of IL 2 receptor expression as TCF1. Because some effects of IL 1 and TCF1 are distinct and some overlap, we discuss whether IL 1 and TCF1 induce different subsets of PNA- thymocytes

    Shedding of Cryptosporidium in calves and dams – evidence of re-infection and shedding of different gp60 subtypes

    Get PDF
    One of the most common causes of calf diarrhoea is the parasite Cryptosporidium parvum. Two longitudinal studies were carried out on a dairy farm Scotland to determine the prevalence of Cryptosporidium species and subtypes in a group of calves and to determine whether dams were a possible source of calfhood infection. Fecal samples were collected from 25 calves from birth to 12 months in the first year. In the second year, fecal samples were collected from pregnant cows (n = 29) and their calves (n = 30) from birth to 6 months. The samples were tested for Cryptosporidium and speciated. Cryptosporidium parvum-positive samples were subtyped by GP60 fragment analysis. All calves in both studies shed Cryptosporidium during the study period. Cryptosporidium parvum was the predominant species detected in calves ⩽6 weeks of age and at 6 months of age, C. bovis and C. ryanae were detected in calves older than 4 weeks of age but ⩽6 months of age. The prevalence of Cryptosporidium was higher in younger animals than in older animals. GP60 subtyping revealed two subtypes in calves on this farm (IIaA15G2R1 and IIaA19G2R1) that differed in frequency by age. Adult cattle also shed C. parvum, of four gp60 genotypes

    Single quantum dot states measured by optical modulation spectroscopy

    Full text link
    Using optical modulation spectroscopy, we report the direct observation of absorption lines from excitons localized in GaAs single quantum dot potentials. The data provide a measurement of the linewidth, resonance energy, and oscillator strength of the transitions, and show that states which decay primarily by nonradiative processes can be directly probed using this technique. The experiments establish this technique for the characterization of single quantum dot transitions, thereby complementing luminescence studies. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70527/2/APPLAB-75-19-2933-1.pd

    A fully automatic gridding method for cDNA microarray images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Processing cDNA microarray images is a crucial step in gene expression analysis, since any errors in early stages affect subsequent steps, leading to possibly erroneous biological conclusions. When processing the underlying images, accurately separating the sub-grids and spots is extremely important for subsequent steps that include segmentation, quantification, normalization and clustering.</p> <p>Results</p> <p>We propose a parameterless and fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach, first, detects and corrects rotations in the images by applying an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm used to find the positions of the sub-grids in the image and the positions of the spots in each sub-grid. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the image, and the correct number of spots in each sub-grid. Moreover, a refinement procedure is used to correct possible misalignments and increase the accuracy of the method.</p> <p>Conclusions</p> <p>Extensive experiments on real-life microarray images and a comparison to other methods show that the proposed method performs these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approach can be used in various type of microarray images with different resolutions and spot sizes and does not need any parameter to be adjusted.</p

    M3G: Maximum Margin Microarray Gridding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complementary DNA (cDNA) microarrays are a well established technology for studying gene expression. A microarray image is obtained by laser scanning a hybridized cDNA microarray, which consists of thousands of spots representing chains of cDNA sequences, arranged in a two-dimensional array. The separation of the spots into distinct cells is widely known as microarray image gridding.</p> <p>Methods</p> <p>In this paper we propose M<sup>3</sup>G, a novel method for automatic gridding of cDNA microarray images based on the maximization of the margin between the rows and the columns of the spots. Initially the microarray image rotation is estimated and then a pre-processing algorithm is applied for a rough spot detection. In order to diminish the effect of artefacts, only a subset of the detected spots is selected by matching the distribution of the spot sizes to the normal distribution. Then, a set of grid lines is placed on the image in order to separate each pair of consecutive rows and columns of the selected spots. The optimal positioning of the lines is determined by maximizing the margin between these rows and columns by using a maximum margin linear classifier, effectively facilitating the localization of the spots.</p> <p>Results</p> <p>The experimental evaluation was based on a reference set of microarray images containing more than two million spots in total. The results show that M<sup>3</sup>G outperforms state of the art methods, demonstrating robustness in the presence of noise and artefacts. More than 98% of the spots reside completely inside their respective grid cells, whereas the mean distance between the spot center and the grid cell center is 1.2 pixels.</p> <p>Conclusions</p> <p>The proposed method performs highly accurate gridding in the presence of noise and artefacts, while taking into account the input image rotation. Thus, it provides the potential of achieving perfect gridding for the vast majority of the spots.</p

    Differences in virulence and oocyst shedding profiles in lambs experimentally infected with different isolates of Cryptosporidium parvum

    Get PDF
    A wide spectrum of disease severity associated with cryptosporidiosis has been described, ranging from asymptomatic to fatal in both human and animal hosts. The reasons for the variations in severity are likely to be multifactorial, involving environmental, host and parasite factors. This paper describes two experimental infection trials in lambs, a symptomatic host for the parasite, to investigate variation in the clinical manifestations following infection with two distinct isolates of Cryptosporidium parvum. In the first experiment, groups of naïve lambs were challenged with one of two isolates (CP1 or CP2) at ​&lt; ​1 week of age, to test the effect of the isolates on disease outcome. In a second experiment one group of lambs challenged at &lt; 1 week of age (CP1) was then re-challenged with the same isolate at 6 weeks of age (CP1), while a second group was challenged for the first time at 6 weeks of age (CP1). This experiment examined age-related disease symptoms, oocyst shedding and the effect of prior exposure to the parasite on a subsequent homologous challenge. The two isolates were associated with significant differences in the demeanour of the animals and in the numbers of oocysts shed in the faeces. There were also differences in the duration and severity of diarrhoea, though these were not significant. The age of the lamb, at the time of a primary challenge (&lt;1 week or 6 weeks), also resulted in differences in clinical outcomes, with younger lambs showing more severe clinical disease than the older lambs (feeding profiles and presentation of diarrhoea), while older lambs showed virtually no signs of infection but still produced large numbers of oocysts

    Low-temperature spin relaxation in n-type GaAs

    Full text link
    Low-temperature electron spin relaxation is studied by the optical orientation method in bulk n-GaAs with donor concentrations from 10^14 cm^{-3} to 5x10^17 cm^{-3}. A peculiarity related to the metal-to-insulator transition (MIT) is observed in the dependence of the spin lifetime on doping near n_D = 2x10^16 cm^{-3}. In the metallic phase, spin relaxation is governed by the Dyakonov-Perel mechanism, while in the insulator phase it is due to anisotropic exchange interaction and hyperfine interactio

    Single-level anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cage and allograft bone

    Get PDF
    BACKGROUND: In an effort to avoid the morbidity associated with autogenous bone graft harvesting, cervical cages in combination with allograft bone are used to achieve fusion. The goal of the current study was to assess the reliability and efficacy of anterior cervical discectomy and interbody fusion (ACDF) using a PEEK anatomical cervical cage in the treatment of patients affected by single-level cervical degenerative disease. METHODS AND MATERIALS: Twenty-five patients affected by single-level cervical degenerative pathology between C4 and C7 were enrolled in this study. The clinical findings were assessed using the Neck Disability Index and the Visual Analog Scale. Surgical outcomes were rated according to Odom's criteria at last follow-up. Fusion was graded as poor, average, good or excellent by assessing the radiographs. Cervical spine alignment was evaluated by sagittal segmental alignment and sagittal alignment of the whole cervical spine preoperatively, 6 months postoperatively and at the last follow-up. RESULTS: Twenty-five patients underwent ACDF using a PEEK anatomical cervical cage. All patients had a minimum 2 years of follow-up. The operative levels were C4-C5 in 5 patients, C5-C6 in 12 patients and C6-C7 in 8 patients. Preoperatively, average NDI was 34, 13 at 6 months, and 10 at latest follow-up. The mean preoperative VAS was 7; the mean postoperative VAS at latest follow-up was 3. Good or excellent fusion was achieved in all patients within 10 months (mean 5 months). Preoperatively, average sagittal segmental alignment (SSA) was 0.2\ub0 and average sagittal alignment of the cervical spine (SACS) 15.8\ub0. Six months after surgery, average SSA was 1.8\ub0 and average SACS 20.9\ub0, and at last follow-up, average SSA was 1.6\ub0 and average SACS 18.5\ub0. CONCLUSION: Anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cages can be considered a safe and effective technique to cure cervical disc herniation with intractable pain or neural deficit in cases where conservative treatment failed

    Development of a framework for genotyping bovine-derived Cryptosporidium parvum, using a multilocus fragment typing tool

    Get PDF
    Background: There is a need for an integrated genotyping approach for C. parvum; no sufficiently discriminatory scheme to date has been fully validated or widely adopted by veterinary or public health researchers. Multilocus fragment typing (MLFT) can provide good differentiation and is relatively quick and cheap to perform. A MLFT tool was assessed in terms of its typeability, specificity, precision (repeatability and reproducibility), accuracy and ability to genotypically discriminate bovine-derived Cryptosporidium parvum. Methods: With the aim of working towards a consensus, six markers were selected for inclusion based on their successful application in previous studies: MM5, MM18, MM19, TP14, MS1 and MS9. Alleles were assigned according to the fragment sizes of repeat regions amplified, as determined by capillary electrophoresis. In addition, a region of the GP60 gene was amplified and sequenced to determine gp60 subtype and this was added to the allelic profiles of the 6 markers to determine the multilocus genotype (MLG). The MLFT tool was applied to 140 C. parvum samples collected in two cross-sectional studies of UK calves, conducted in Cheshire in 2004 (principally dairy animals) and Aberdeenshire/Caithness in 2011 (beef animals). Results: Typeability was 84 %. The primers did not amplify tested non-parvum species frequently detected in cattle. In terms of repeatability, within- and between-run fragment sizes showed little variability. Between laboratories, fragment sizes differed but allele calling was reproducible. The MLFT had good discriminatory ability (Simpson’s Index of Diversity, SID, was 0.92), compared to gp60 sequencing alone (SID 0.44). Some markers were more informative than others, with MS1 and MS9 proving monoallelic in tested samples. Conclusions: Further inter-laboratory trials are now warranted with the inclusion of human-derived C. parvum samples, allowing progress towards an integrated, standardised typing scheme to enable source attribution and to determine the role of livestock in future outbreaks of human C. parvum
    corecore