16 research outputs found

    Poole-Frenkel Effect and Phonon-Assisted Tunneling in GaAs Nanowires

    Full text link
    We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect-ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts

    Suppression of mid-infrared plasma resonance due to quantum confinement in delta-doped silicon

    Full text link
    The classical Drude model provides an accurate description of the plasma resonance of three-dimensional materials, but only partially explains two-dimensional systems where quantum mechanical effects dominate such as P:δ\delta-layers - atomically thin sheets of phosphorus dopants in silicon that induce novel electronic properties beyond traditional doping. Previously it was shown that P:δ\delta-layers produce a distinct Drude tail feature in ellipsometry measurements. However, the ellipsometric spectra could not be properly fit by modeling the δ\delta-layer as discrete layer of classical Drude metal. In particular, even for large broadening corresponding to extremely short relaxation times, a plasma resonance feature was anticipated but not evident in the experimental data. In this work, we develop a physically accurate description of this system, which reveals a general approach to designing thin films with intentionally suppressed plasma resonances. Our model takes into account the strong charge density confinement and resulting quantum mechanical description of a P:δ\delta-layer. We show that the absence of a plasma resonance feature results from a combination of two factors: i), the sharply varying charge density profile due to strong confinement in the direction of growth; and ii), the effective mass and relaxation time anisotropy due to valley degeneracy. The plasma resonance reappears when the atoms composing the δ\delta-layer are allowed to diffuse out from the plane of the layer, destroying its well-confined two-dimensional character that is critical to its novel electronic properties

    Observation of Space-Charge-Limited Transport in InAs Nanowires

    Full text link
    Recent theory and experiment have suggested that space-charge-limited transport should be prevalent in high aspect-ratio semiconducting nanowires. We report on InAs nanowires exhibiting this mode of transport and utilize the underlying theory to determine the mobility and effective carrier concentration of individual nanowires, both of which are found to be diameter-dependent. Intentionally induced failure by Joule heating supports the notion of space-charge-limited transport and proposes reduced thermal conductivity due to the nanowires polymorphism

    Impact of Casimir force in molecular electronic switching junctions

    No full text
    Despite significant progress In synthesizing several new molecules and many promising single device demonstrations, wide range acceptance of molecular electronics as an alternative to CMOS technology has been stalled not only by controversial theories of a molecular device's operation, for example the switching mechanism, but also by our inability to reproducibly fabricate large arrays of devices. In this paper, we investigate the role of Casimir force as one of the potential source of a wide range of discrepancies in the reported electrical characteristics and high rate of device shorting in molecular electronic switching junctions fabricated by sandwiching a molecular monolayer between a pair of planar metal electrodes

    Nanoscale Infrared Spectroscopy: Improving the Spectral Range of the Photothermal Induced Resonance Technique

    No full text
    Photothermal induced resonance (PTIR) is a new technique which combines the chemical specificity of infrared (IR) spectroscopy with the lateral resolution of atomic force microscopy (AFM). PTIR requires a pulsed tunable laser for sample excitation and an AFM tip to measure the sample expansion induced by light absorption. The limited tunability of commonly available laser sources constrains the application of the PTIR technique to a portion of the IR spectrum. In this work, a broadly tunable pulsed laser relying on a difference frequency generation scheme in a GaSe crystal to emit light tunable from 1.55 μm to 16 μm (from 6450 cm<sup>–1</sup> to 625 cm<sup>–1</sup>) was interfaced with a commercial PTIR instrument. The result is a materials characterization platform capable of chemical imaging, in registry with atomic force images, with a spatial resolution that notably surpasses the light diffraction limit throughout the entire mid-IR spectral range. PTIR nanoscale spectra and images allow the identification of compositionally and optically similar yet distinct materials; organic, inorganic, and composite samples can be studied with this nanoscale analog of infrared spectroscopy, suggesting broad applicability. Additionally, we compare the results obtained with the two tunable lasers, which have different pulse lengths, to experimentally assess the recently developed theory of PTIR signal generation

    Sonochemical approach for rapid growth of zinc oxide nanowalls

    No full text
    The sonochemical process drives chemical reactions with sound fields by creating extraordinarily high density of energy, pressure and temperatures. The process resulted in a number of unexpected chemical species and thought-provoking results in the recent past. In this paper, we present a new sonochemical approach to synthesize ZnO (zinc oxide) nanowalls (NWalls) on aluminum and alumina coated substrates at room ambient conditions. We achieved highly dense and uniform ZnO NWalls in areas that are coated with Al or Al2O3 (alumina). The synthesis process was shown not to occur on Si, SiO2, Cr, or Ag surfaces. A series of experiments on understanding the growth kinetics offers detailed insight into the growth dynamics over time. Photoluminescence (PL) measurements, UV Vis spectroscopy, and SEM-EDS results confirm NWalls composed of crystalline ZnO that are formed via Al assisted growth induced by phase transformations under extraordinary pressure, temperature, and chemical growth kinetics. The chemical growth method as reported here, is applicable to arbitrary substrates coated with an Al thin film. We demonstrate the applications of the as-formed NWalls in UV photoconductors and gas sensors

    Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique

    No full text
    The photothermal induced resonance (PTIR) method measures the near-field absorption in gold plasmonic structures. PTIR absorption images show the interference between the bright and dark modes of asymmetric split ring resonators (ASRRs). The plasmonic absorption spectra of the ASRRs individual arcs are obtained locally, confirming the collective nature of the plasmonic excitation. Scale bars are 500 nm
    corecore