982 research outputs found
CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4+ T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b+CD11c−CD45HIGH monocytes/macrophages and CD11b+CD11c+CD45HIGH dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4+ and CD8+ T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Measurement of event shapes in deep inelastic scattering at HERA
Inclusive event-shape variables have been measured in the current region of
the Breit frame for neutral current deep inelastic ep scattering using an
integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA.
The variables studied included thrust, jet broadening and invariant jet mass.
The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6,
where Q^2 is the virtuality of the exchanged boson and x is the Bjorken
variable. The Q dependence of the shape variables has been used in conjunction
with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative
corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
- …