7,925 research outputs found

    Strongly interacting neutrinos as the highest energy cosmic rays

    Get PDF
    We show that all features of the ultrahigh energy cosmic ray spectrum from 10^{17} eV to 10^{21} eV can be described with a simple power-like injection spectrum of protons under the assumption that the neutrino-nucleon cross-section is significantly enhanced at center of mass energies above \approx 100 TeV. In our scenario, the cosmogenic neutrinos produced during the propagation of protons through the cosmic microwave background initiate air showers in the atmosphere, just as the protons. The total air shower spectrum induced by protons and neutrinos shows excellent agreement with the observations. A particular possibility for a large neutrino-nucleon cross-section exists within the Standard Model through electroweak instanton-induced processes.Comment: 8 pages, 4 figures, talk given at Beyond the Desert '03, Castle Ringberg, 9-14 June, 200

    Four-dimensional lattice results on the MSSM electroweak phase transition

    Get PDF
    We present the results of our large scale 4-dimensional (4d) lattice simulations for the MSSM electroweak phase transition (EWPT). We carried out infinite volume and continuum limit extrapolations and found a transition whose strength agrees well with perturbation theory. We determined the properties of the bubble wall that are important for a successful baryogenesis.Comment: 5 pages, 3figures. Talk presented at Johns Hopkins Workshop on Nonperturbative Quantum Field Theory Methods and their Applications (19-21 August 2000.

    Electroweak Phase Transition in the MSSM: 4-Dimensional Lattice Simulations

    Get PDF
    Recent lattice results have shown that there is no Standard Model (SM) electroweak phase transition (EWPT) for Higgs boson masses above \approx 72 GeV, which is below the present experimental limit. According to perturbation theory and 3-dimensional (3d) lattice simulations there could be an EWPT in the Minimal Supersymmetric Standard Model (MSSM) that is strong enough for baryogenesis up to m_h \approx 105 GeV. In this letter we present the results of our large scale 4-dimensional (4d) lattice simulations for the MSSM EWPT. We carried out infinite volume and continuum limits and found a transition whose strength agrees well with perturbation theory, allowing MSSM electroweak baryogenesis at least up to m_h = 103 \pm 4 GeV. We determined the properties of the bubble wall that are important for a successful baryogenesis.Comment: 4 pages, 4 figures included; lightest Higgs mass bound relaxed (abstract, fig. 3 changed), version to appear in Phys. Rev. Letter

    Local CP-violation and electric charge separation by magnetic fields from lattice QCD

    Get PDF
    We study local CP-violation on the lattice by measuring the local correlation between the topological charge density and the electric dipole moment of quarks, induced by a constant external magnetic field. This correlator is found to increase linearly with the external field, with the coefficient of proportionality depending only weakly on temperature. Results are obtained on lattices with various spacings, and are extrapolated to the continuum limit after the renormalization of the observables is carried out. This renormalization utilizes the gradient flow for the quark and gluon fields. Our findings suggest that the strength of local CP-violation in QCD with physical quark masses is about an order of magnitude smaller than a model prediction based on nearly massless quarks in domains of constant gluon backgrounds with topological charge. We also show numerical evidence that the observed local CP-violation correlates with spatially extended electric dipole structures in the QCD vacuum.Comment: 19 pages, 7 figures. Additional lattice results about the induced electric dipole structure, extended model description, specified terminology. Version published in JHE
    • …
    corecore