37,017 research outputs found

    Weak Coupling, Degeneration and Log Calabi-Yau Spaces

    Full text link
    We establish a new weak coupling limit in F-theory. The new limit may be thought of as the process in which a local model bubbles off from the rest of the Calabi-Yau. The construction comes with a small deformation parameter tt such that computations in the local model become exact as t→0t \to 0. More generally, we advocate a modular approach where compact Calabi-Yau geometries are obtained by gluing together local pieces (log Calabi-Yau spaces) into a normal crossing variety and smoothing, in analogy with a similar cutting and gluing approach to topological field theories. We further argue for a holographic relation between F-theory on a degenerate Calabi-Yau and a dual theory on its boundary, which fits nicely with the gluing construction.Comment: 59 pp, 2 figs, LaTe

    Implementing Transitive Credit with JSON-LD

    Full text link
    Science and engineering research increasingly relies on activities that facilitate research but are not currently rewarded or recognized, such as: data sharing; developing common data resources, software and methodologies; and annotating data and publications. To promote and advance these activities, we must develop mechanisms for assigning credit, facilitate the appropriate attribution of research outcomes, devise incentives for activities that facilitate research, and allocate funds to maximize return on investment. In this article, we focus on addressing the issue of assigning credit for both direct and indirect contributions, specifically by using JSON-LD to implement a prototype transitive credit system.Comment: accepted by WSSSPE2 - http://wssspe.researchcomputing.org.uk/wssspe2

    Hierarchies from D-brane instantons in globally defined Calabi-Yau Orientifolds

    Full text link
    We construct the first globally consistent semi-realistic Type I string vacua on an elliptically fibered manifold where the zero modes of the Euclidean D1-instanton sector allow for the generation of non-perturbative Majorana masses of an intermediate scale. In another class of global models, a D1-brane instanton can generate a Polonyi-type superpotential breaking supersymmetry at an exponentially suppressed scale.Comment: 4 pages, 4 tables, uses revtex; v2: Discussion of instanton curves improved, typos fixed, references added; v3: version published in PR

    Phase transitions, double-scaling limit, and topological strings

    Get PDF
    Topological strings on Calabi--Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi--Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q--deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q--deformed 2d Yang--Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2d gravity. We give strong evidence that there is a double--scaled theory at the critical point whose all genus free energy is governed by the Painlev\'e I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2d supergravity. We also give evidence for a new open/closed duality relating these Calabi--Yau backgrounds to open strings with framing.Comment: 49 pages, 3 eps figures; section added on non-perturbative proposal and 2d gravity; minor typos correcte

    The baryonic Tully-Fisher relation for different velocity definitions and implications for galaxy angular momentum

    Full text link
    We study the baryonic Tully-Fisher relation (BTFR) at z=0 using 153 galaxies from the SPARC sample. We consider different definitions of the characteristic velocity from HI and H-alpha rotation curves, as well as HI line-widths from single-dish observations. We reach the following results: (1) The tightest BTFR is given by the mean velocity along the flat part of the rotation curve. The orthogonal intrinsic scatter is extremely small (6%) and the best-fit slope is 3.85+/-0.09, but systematic uncertainties may drive the slope from 3.5 to 4.0. Other velocity definitions lead to BTFRs with systematically higher scatters and shallower slopes. (2) We provide statistical relations to infer the flat rotation velocity from HI line-widths or less extended rotation curves (like H-alpha and CO data). These can be useful to study the BTFR from large HI surveys or the BTFR at high redshifts. (3) The BTFR is more fundamental than the relation between angular momentum and galaxy mass (the Fall relation). The Fall relation has about 7 times more scatter than the BTFR, which is merely driven by the scatter in the mass-size relation of galaxies. The BTFR is already the "fundamental plane" of galaxy discs: no value is added with a radial variable as a third parameter.Comment: 12 pages, 6 figures, accepted for publication in MNRA

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development
    • …
    corecore