1,250 research outputs found

    Investigation of solidification in zero-gravity environment; M553 sphere forming experiment. Phase C: Evaluation of Skylab specimens

    Get PDF
    Results on specimen evaluation and discussion of solidification behavior in each case are reported in the following order: (1) specimen SL-1.6, (2) specimen SL-2.8, (3) specimen SL-2.4, (4) specimen SL-1.10 and (5) specimen SL-1.11. Comparison is made with ground-processed specimens of similar composition, whenever pertinent and meaningful. Among the nondestructive evaluation methods the measurement of sphericity was conducted by micrometric and shadowgraphic techniques. The intricate shape of specimens in some cases appeared difficult to define. In measuring the density, liquid penetration inside cavities that outcrop on the surface was avoided by sealing off these cavities. Among the destructive evaluation methods the use of the Quantimet 720 required particular attention, because of the small difference in contrast between second phases and micropores. With regard to microporosity microvoids in the core of some specimens were so fine that X-ray microradiography had to be used

    Investigation of solidification in zero-gravity environment: M553 sphere forming experiment. Nickel-silver alloy evaluation

    Get PDF
    The processing of nickel-silver alloy specimens in space is discussed. Four specimens were melted only partially, while a fifth was melted completely and assumed after solidification a perfectly spherical shape. Growth of the solid was epitaxial on the unmelted material or on the retaining sting and occurred without undercooling. Solidification was dendritic in all cases with nonequilibrium silver particles forming monotectically between dendrite arms. Substantial loss of silver by evaporation took place. Evaporation of the silver within internal gas cavities on the melt was followed by surface condensation after completion of solidification and cooling, leading to a silver-rich lining in these cavities. The material gave no microstructural evidence of any reduction in liquid convection

    Flight 1 technical report for experiment 74-37 contained polycrystalline solidification in low-G

    Get PDF
    A .005 M solution of fluorescein in cyclohexanol was directionally solidified in a standard 10 x 10 x 45mm UV silica cuvette, using a bottom thermoelectric chilling device. Progress of the experiment was monitored by time lapse photography. During flight (SPAR I) the camera malfunctioned and only one quarter of the expected data were collected. Comparison of flight and ground specimens indicated that: (1) The dark green layer observed ahead of the solid-liquid interface which is most likely the solute-enriched zone, appears to be wider in the flight specimen; (2) Parasitic nucleation ahead of the solid-liquid interface in the flight sample led to an irregularly shaped interface, smaller grain size, equiaxed grain morphology and a larger average macroscopic growth rate; (3) The formation of equiaxed grains ahead of the solid-liquid interface in the flight specimen may be attributed to ordered islands within the liquid, which survived remelting because of the low degree of superheating (approximately equal to 1.5 C), did not settle because of reduced gravity and acted as nuclei during cooling

    Flight IV technical report for experiment 74-37 contained polycrystalline solidification in low-G

    Get PDF
    Experiments were performed to study the effect of a low-gravity environment on the columnar-to-equiaxed transition (CET) during polycrystalline solidification. Solutions of H2O-30 wt% NH4Cl and H2O-37 wt% NH4Cl were solidified in semicylindrical molds with radial heat extraction. Both solutions were quenched from the same soak temperature (90 C); the respective superheat temperatures were, therefore, approximately 57 and 23 C. The lower superheat resulted in a completely columnar structure, and the higher superheat resulted in a 1/3 columnar - 2/3 equiaxed microstructure; these results were independent of the relationship between heat flow direction and gravity. Grain multiplication mechanisms observed were showering, thermal inversion driven convection cells, and compositionally induced density inversion driven convection cells

    Energy Harvesting for Micromobility Systems

    Get PDF
    No Abstract

    Spontaneous deterministic side-branching behavior in phase-field simulations of equiaxed dendritic growth

    Get PDF
    The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see, e.g., M. E. Glicksman, Metall. Mater. Trans A 43, 391 (2012)]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here, we present simulations that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Spontaneous side-branching seems to be favoured by high undercoolings and by intermediate values of the capillary anisotropy, with the most branched structures being obtained for an anisotropy strength of 0.03. From an analysis of the tangential thermal gradients on the solid-liquid interface, the mechanism for side-branching appears to have some similarities with the deterministic model proposed by Glicksman

    High power diode laser modification of the wettability characteristics of an Al2O3/SiO2 based oxide compound for improved enamelling

    Get PDF
    High power diode laser (HPDL) surface melting of a thin layer of an amalgamated Al2O3/SiO2 oxide compound (AOC) resulted in significant changes in the wettability characteristics of the material. This behaviour was identified as being primarily due to: (i) the polar component of the AOC surface energy increasing after laser melting from 2.0 to 16.2 mJm-2, (ii) the surface roughness of the AOC decreasing from an Ra value of 25.9 to 6.3 μm after laser melting and (iii) the relative surface oxygen content of the AOC increasing by 36% after laser melting. HPDL melting was consequently identified as affecting a decrease in the enamel contact angle from 1180 prior to laser melting to 330 after laser melting; thus allowing the vitreous enamel to wet the AOC surface. The effective melt depth for such modifications was measured as being from 50 to 125 μm. The morphological, microstructural and wetting characteristics of the AOC were determined using optical microscopy, scanning electron microscopy, energy disperse X-ray analysis, X-ray diffraction techniques and wetting experiments by the sessile drop technique. The work has shown that laser radiation can be used to alter the wetting characteristics of the AOC only when surface melting occurs

    Influence of optical standing waves on the femtosecond laser-induced forward transfer of transparent thin films

    No full text
    The effects of the formation of an optical standing wave during femtosecond laser-induced forward transfer of transparent films is analyzed using a numerical interference model. The dependence of the intensity distribution on a number of easily controllable experimental parameters is investigated. Results of the model are compared to experimental studies of the transfer of gadolinium gallium oxide (GdGaO) with a polymer sacrificial layer. The model allows us to explain the observed variation in deposit morphology with the size of the air gap, and why forward transfer of the GdGaO was possible below the ablation thresholds of polymer and oxide
    • …
    corecore