23 research outputs found

    Characterization of Catalase from Psychrotolerant Psychrobacter piscatorii T-3 Exhibiting High Catalase Activity

    Get PDF
    A psychrotolerant bacterium, strain T-3 (identified as Psychrobacter piscatorii), that exhibited an extraordinarily high catalase activity was isolated from the drain pool of a plant that uses H2O2 as a bleaching agent. Its cell extract exhibited a catalase activity (19,700 U·mg protein−1) that was higher than that of Micrococcus luteus used for industrial catalase production. Catalase was approximately 10% of the total proteins in the cell extract of the strain. The catalase (PktA) was purified homogeneously by only two purification steps, anion exchange and hydrophobic chromatographies. The purified catalase exhibited higher catalytic efficiency and higher sensitivity of activity at high temperatures than M. luteus catalase. The deduced amino acid sequence showed the highest homology with catalase of Psycrobacter cryohalolentis, a psychrotolelant bacterium obtained from Siberian permafrost. These findings suggest that the characteristics of the PktA molecule reflected the taxonomic relationship of the isolate as well as the environmental conditions (low temperatures and high concentrations of H2O2) under which the bacterium survives. Strain T-3 efficiently produces a catalase (PktA) at a higher rate than Exiguobacterium oxidotolerans, which produces a very strong activity of catalase (EktA) at a moderate rate, in order to adapt to high concentration of H2O2

    Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide

    No full text
    Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H(2)O(2)) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H(2)O(2) was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 ÎźM) of H(2)O(2). Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts

    Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii

    No full text
    The role of reactive oxygen species (ROS) in cell communication, control of gene expression, and oxygen sensing is well established. Inappropriate regulation of ROS levels can damage cells, resulting in a diseased state. In Colletotrichum trifolii, a fungal pathogen of alfalfa, the mutationally activated oncogenic fungal Ras (DARas) elevates levels of ROS, causing abnormal fungal growth and development and eventual apoptotic-like cell death but only when grown under nutrient-limiting conditions. Remarkably, restoration to the wild-type phenotype requires only proline. Here, we describe a generally unrecognized function of proline: its ability to function as a potent antioxidant and inhibitor of programmed cell death. Addition of proline to DARas mutant cells effectively quenched ROS levels and prevented cell death. Treating cells with inhibitors of ROS production yielded similar results. In addition, proline protected wild-type C. trifolii cells against various lethal stresses, including UV light, salt, heat, and hydrogen peroxide. These observations appear to be general because proline also protected yeast cells from lethal levels of the ROS-generating herbicide methyl viologen (paraquat), suggesting a common protective role for proline in response to oxidative stress. The ability of proline to scavenge intracellular ROS and inhibit ROS-mediated apoptosis may be an important and broad-based function of this amino acid in responding to cellular stress, in addition to its well established role as an osmolyte
    corecore