122 research outputs found

    Antarctic Bottom Water production estimated by hydrographic observations

    Get PDF
    第2回極域科学シンポジウム/第34回気水圏シンポジウム 11月17日(木) 統計数理研究所 セミナー室

    Dissolved methane distribution in surface seawater and its controlling factors  in mid- and high-latitudes in the Southern Ocean

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IB1] 海氷域における生物地球化学的研究11月17日(火) 統計数理研究所 セミナー室1(D305

    Unabated bottom water warming and freshening in the south Pacific Ocean.

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1778-1794, doi:10.1029/2018JC014775.Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z > 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.S. G. P. was supported by a U.S. GO‐SHIP postdoctoral fellowship through NSF grant OCE‐1437015, which also supported L. D. T. and S. M. and collection of U.S. GO‐SHIP data since 2014 on P06, S4P, P16, and P18. G. C. J. is supported by the Global Ocean Monitoring and Observation Program, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research. B. M. S and S. E. W. were supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. We are grateful for the hard work of the science parties, officers, and crew of all the research cruises on which these CTD data were collected. We also thank the two anonymous reviewers for their helpful comments that improve the manuscript. This is PMEL contribution 4870. All CTD data sets used in this analysis are publicly available at the website (https://cchdo.ucsd.edu).2019-08-2

    The scientific and societal uses of global measurements of subsurface velocity

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Szuts, Z. B., Bower, A. S., Donohue, K. A., Girton, J. B., Hummon, J. M., Katsumata, K., Lumpkin, R., Ortner, P. B., Phillips, H. E., Rossby, H. T., Shay, L. K., Sun, C., & Todd, R. E. The scientific and societal uses of global measurements of subsurface velocity. Frontiers in Marine Science, 6, (2019): 358, doi:10.3389/fmars.2019.00358.Ocean velocity defines ocean circulation, yet the available observations of subsurface velocity are under-utilized by society. The first step to address these concerns is to improve visibility of and access to existing measurements, which include acoustic sampling from ships, subsurface float drifts, and measurements from autonomous vehicles. While multiple programs provide data publicly, the present difficulty in finding, understanding, and using these data hinder broader use by managers, the public, and other scientists. Creating links from centralized national archives to project specific websites is an easy but important way to improve data discoverability and access. A further step is to archive data in centralized databases, which increases usage by providing a common framework for disparate measurements. This requires consistent data standards and processing protocols for all types of velocity measurements. Central dissemination will also simplify the creation of derived products tailored to end user goals. Eventually, this common framework will aid managers and scientists in identifying regions that need more sampling and in identifying methods to fulfill those demands. Existing technologies are capable of improving spatial and temporal sampling, such as using ships of opportunity or from autonomous platforms like gliders, profiling floats, or Lagrangian floats. Future technological advances are needed to fill sampling gaps and increase data coverage.This work was supported by the National Science Foundation, United States, Grant Numbers 1356383 to ZBS, OCE 1756361 to ASB at the Woods Hole Oceanographic Institution, and 1536851 to KAD and HTR; the National Oceanographic and Atmospheric Administration, United States, Ocean Observations and Monitoring Division and Atlantic Oceanographic and Meteorological Laboratory to RL; Royal Caribbean Cruise Ltd., to PBO; the Australian Government Department of the Environment and Energy National Environmental Science Programme and Australian Research Council Centre of Excellence for Climate Extremes to HEP; and the Gulf of Mexico Research Initiative Grant V-487 to LS

    Delivering sustained, coordinated and integrated observations of the Southern Ocean for global impact

    Get PDF
    The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths >2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.Fil: Newman, Louise. University of Tasmania; AustraliaFil: Heil, Petra. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Trebilco, Rowan. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Katsumata, Katsuro. Japan Agency For Marine earth Science And Technology; JapónFil: Constable, Andrew J.. Antarctic Climate And Ecosystems Cooperative Research Centre; Australia. Australian Antarctic Division; AustraliaFil: Wijk, Esmee van. Commonwealth Scientific And Industrial Research Organization; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Assmann, Karen. University Goteborg; SueciaFil: Beja, Joana. British Oceanographic Data Centre; AustraliaFil: Bricher, Phillippa. University of Tasmania; AustraliaFil: Coleman, Richard. University of Tasmania; AustraliaFil: Costa, Daniel. University of California; Estados UnidosFil: Diggs, Steve. University of California; Estados UnidosFil: Farneti, Riccardo. The Abdus Salam; Italia. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Fawcett, Sarah. University of Cape Town; SudáfricaFil: Gille, Sarah. University of California; Estados UnidosFil: Hendry, Katharine R.. University of Bristol; Reino UnidoFil: Henley, Sian F.. University of Edinburgh; Reino UnidoFil: Hofmann, Eileen. Old Dominion University; Estados UnidosFil: Maksym, Ted. University of California; Estados UnidosFil: Mazloff, Matthew. University of California; Estados UnidosFil: Meijers, Andrew J.. British Antartic Survey; Reino UnidoFil: Meredith, Michael. British Antartic Survey; Reino UnidoFil: Moreau, Sebastien. Norwegian Polar Institute; NoruegaFil: Ozsoy, Burcu. Istanbul Teknik Üniversitesi; TurquíaFil: Robertson, Robin. Xiamen University; ChinaFil: Schloss, Irene Ruth. Universidad Nacional de Tierra del Fuego; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Schofield, Oscar. State University of New Jersey; Estados UnidosFil: Shi, Jiuxin. Ocean University Of China; ChinaFil: Sikes, Elisabeth L.. State University of New Jersey; Estados UnidosFil: Smith, Inga J.. University of Otago; Nueva Zeland

    南極底層水を起点とする熱塩循環・物質循環のダイナミクス

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IG] 全球環境変動を駆動する南大洋・南極氷床11月17日(火) 国立極地研究所 2階 大会議

    The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A platform for integrated multidisciplinary ocean science

    Get PDF
    The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth’s climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo’s unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade

    南半球 1000 m 深の渦

    No full text
    corecore