264 research outputs found

    Damping Reduction Factors for Crustal, Inslab, and Interface Earthquakes Characterizing Seismic Hazard in Southwestern British Columbia, Canada

    Get PDF
    High-damping displacement spectra and corresponding damping reduction factors ( η) are important ingredients in seismic design and analysis of structures equipped with seismic protection systems, as well as in displacement-based design methodologies. In this study, we investigated η factors for three types of earthquake characterizing seismic hazard in southwestern British Columbia, Canada: shallow crustal, deep inslab, and interface subduction. We used a large and comprehensive database including records from recent relevant earthquakes, such as the 2011 Tohoku event. Our key observations were as follows: (1) there is negligible dependence of η on soil class; (2) there is significant dependence of η on the frequency content and duration of ground motions that characterize the different record types, and (3) η is dependent on period, particularly for inslab events. Period-dependent equations were proposed to predict η for damping ratios between 5% and 30% corresponding to the three event types.</jats:p

    Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption

    Full text link
    Infrared absorption spectra of SrTiO3_3 have been measured under above-band-gap photoexcitations to study the properties of photogenerated carriers, which should play important roles in previously reported photoinduced phenomena in SrTiO3_3. A broad absorption band appears over the entire mid-infrared region under photoexcitation. Detailed energy, temperature, and excitation power dependences of the photoinduced absorption are reported. This photo-induced absorption is attributed to the intragap excitations of the photogenerated carriers. The data show the existence of a high density of in-gap states for the photocarriers, which extends over a wide energy range starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Ultra-stable performance of an underground-based laser interferometer observatory for gravitational waves

    Full text link
    In order to detect the rare astrophysical events that generate gravitational wave (GW) radiation, sufficient stability is required for GW antennas to allow long-term observation. In practice, seismic excitation is one of the most common disturbances effecting stable operation of suspended-mirror laser interferometers. A straightforward means to allow more stable operation is therefore to locate the antenna, the ``observatory'', at a ``quiet'' site. A laser interferometer gravitational wave antenna with a baseline length of 20m (LISM) was developed at a site 1000m underground, near Kamioka, Japan. This project was a unique demonstration of a prototype laser interferometer for gravitational wave observation located underground. The extremely stable environment is the prime motivation for going underground. In this paper, the demonstrated ultra-stable operation of the interferometer and a well-maintained antenna sensitivity are reported.Comment: 8 pages, to appear on PR

    Constraints on Cardassian Scenario from the Expansion Turnaround Redshift and the Sunyaev-Zeldovich/X-ray Data

    Full text link
    Cosmic acceleration is one of the most remarkable cosmological findings of recent years. Although a dark energy component has usually been invoked as the mechanism for the acceleration, A modification of Friedmann equation from various higher dimensional models provides a feasible alternative. Cardassian expansion is one of these scenarios. In this work, we first consider the constraints on the parameter space from the turnaround redshift, z_{q=0}, at which the universe switches from deceleration to acceleration. We show that, for every Omega_m, there exist a unique n_{peak} (Omega_m), which makes z_{q=0} reach its maximum value, [z_{q=0}]_{max} = exp[1/ (2-3n_{peak})] -1, which is unlinearly inverse to Omega_m. If the acceleration happans earlier than z_{q=0} = 0.6, suggested by Type Ia supernovae measurements, we have Omega_m < 0.328 no matter what the power index is, and moreover, for reasonable matter density, Omega_m ~ 0.3, it is found n ~ (-0.45,0.25). We next test this scenario using the Sunyaev-Zeldovich/X-ray data of a sample of 18 galaxy clusters with 0.14 < z < 0.83 compiled by Reese et al. (2002). The constraints from the current SZ/X-ray data is weak, though a model with lower matter density is prefered. A certain range of the model parameters is also consistent with the data.Comment: 18 pages, 4 figures, accepted for publication in Ap

    Activation of Steroid and Xenobiotic Receptor (SXR, NR1I2) and Its Orthologs in Laboratory Toxicologic, and Genome Model Species

    Get PDF
    Background: Nuclear receptor subfamily 1, group I, member 2 (NR1I2), commonly known as steroid xenobiotic receptor (SXR) in humans, is a key ligand-dependent transcription factor responsible for the regulation of xenobiotic, steroid, and bile acid metabolism. The ligand-binding domain is principally responsible for species-specific activation of NR1I2 in response to xenobiotic exposure. Objectives: Our objective in this study was to create a common framework for screening NR1I2 orthologs from a variety of model species against environmentally relevant xenobiotics and to evaluate the results in light of using the species as predictors of xenobiotic disposition and for assessment of environmental health risk. Methods: Sixteen chimeric fusion plasmid vectors expressing the Gal4 DNA-binding domain and species-specific NR1I2 ligand-binding domain were screened for activation against a spectrum of 27 xenobiotic compounds using a standardized cotransfection receptor activation assay. Results: NR1I2 orthologs were activated by various ligands in a dose-dependent manner. Closely related species show broadly similar patterns of activation; however, considerable variation to individual compounds exists, even among species varying in only a few amino acid residues. Conclusions: Interspecies variation in NR1I2 activation by various ligands can be screened through the use of in vitro NR1I2 activation assays and should be taken into account when choosing appropriate animal models for assessing environmental health risk

    Current status of Japanese detectors

    Full text link
    Current status of TAMA and CLIO detectors in Japan is reported in this article. These two interferometric gravitational-wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in low frequency region after the last observation experiment in 2004. To reduce the seismic noises, we are installing new seismic isolation system, which is called TAMA Seismic Attenuation System, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for LCGT. Next data taking in the summer of 2007 is planned. CLIO is a 100-m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates Kamioka underground site for low seismic noise level, and adopts cryogenic Sapphire mirrors for low thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February of 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observation experiments at room temperature have been done. Once the displacement noise reaches at thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Muonic atom X-ray spectroscopy for non-destructive analysis of archeological samples

    Get PDF
    The implementation in the RIKEN-RAL negative muons facility of a new muon beamline monitoring and novel digital data acquisition system for gamma and X-ray spectroscopy are presented. This work also shows the high potential of the muonic atoms X-ray spectroscopy technique in non-destructive elemental characterization of archaeological samples
    corecore