43 research outputs found
Simultaneous Determination of Metals in Coal with Low-Resolution Continuum Source Atomic Absorption Spectrometer and Filter Furnace Atomizer
The setup including low-resolution spectrometer with the charge-coupled device (CCD) detector, continuum radiation source and filter furnace (FF) atomizer was employed for direct simultaneous determination of Al, Fe, Mg, Cu and Mn in coal slurry. In the FF, sample vapour entered absorption volume by filtering through heated graphite. Absorption spectrum within 200β400 nm was repeatedly recorded during the atomization period with spectral resolution 0.3 nm. The output of the CCD elements was measured within each spectrum, atomic absorption at specific wavelengths measured and corrected with respect to the linearization algorithm, and integrated. Calibration was performed using carbon slurry impregnated by the analyte metals as well as with the analytes added to the slurries as multi-element solutions. The comparison showed preference of the second method, which provides for 60 % of measurements the results within 10 % deviation range from the certified reference data independent of concentration of the analyte. Low-resolution spectral instrument with fast CCD detection makes possible simultaneous detection of transient absorption signals for several elements. The use of continuum light source makes it possible to determine broad range of concentrations without slurry dilution.Keywords: Coal slurry, electrothermal atomic absorption spectrometry, simultaneous multi-element determination, filter furnace atomize
Simultaneous Multi-Element Electrothermal Atomic Absorption Determination Using a Low Resolution CCD Spectrometer and Continuum Light Source: The Concept and Methodology
A low resolution CCD spectrometer with continuum light source and fast-heated graphite tube atomizer was employed for simultaneous multi element determination by electrothermal atomic absorption spectrometry (SMET AAS). The sample vaporization pulse was monitored by fast scanning of vapour spectra within the 190β410 nm wavelength range; absorption was measured at the CCD pixels corresponding to atomic resonance lines; function absorbance vs. concentration of atomic vapour was automatically linearized, and the modified signals integrated. The setup consisted of a D2 or Xe arc lamp, a spectral instrument with a half-width of transmittance profile 120 pm, a linear CCD array attached to a PC and a tube atomizer furnished with a carbon fibre collector. In the experiments simultaneous determination of 18 elements was performed in the mixed solutions at the mg Lβ1 to ΞΌg Lβ1 level, within 4β4.5 orders of magnitude linear concentration range. About 1β2 min was needed for the measurement and calculation. Limits of detection (LOD) for individual elements were 1.5β2 orders of magnitude higher than those in the single element ET AAS, but similar or below those in flame AAS. Further reduction of LODs and correction of possible spectral and chemical interferences are associated with optimization of the light source and atomization programme and modification of the calculation algorithm.Keywords: Electrothermal Atomic Absorption Spectrometry, Simultaneous Multi-element Determination, CCD Spectrometer, Fast-heated Graphite Tube Atomize
Πn introduction to multi-element atomic-absorption analysis
The interest of analysts in continuum source (CS) electrothermal atomic absorption spectrometry (ET AAS) is due to the potential opportunity of observing and using, for quantitative measurements, an overview absorption spectrum representing the total composition of the sample. The simultaneous multi-element determination concept, combined with the fundamental advantages of the traditional ET AAS, such as the low spectral-line overlap and high sensitivity can have a revolutionary impact on the determination technology regarding the determination time, range of substances accessible for the analysis, simplification of the sampling procedure or direct micro-sampling. The implementing of respective analytical methodology, however, apart for improvement of the instrumentation, is associated with some specific problems. Equal for the elements to be determined experimental conditions exclude the selective optimization of the dilution rate, chemical modification or thermal pre-treatment. For the realistic, e.g. environmental, samples the determination task is aggravated by broad, up to several orders of magnitude, dispersion of elements contents, different sensitivity of the analytical lines and variety of vaporization and atomization rates controlled by the thermodynamic characteristics of the element and matrix, properties of the substrate, temperature of the gas and mechanism of mass transfer in the atomizer. Evidently, the development of the instrumentation and respective analytical methodology should be based on clear perception regarding the processes leading to the formation of analytical signals in CS ET AAS. For that, generalization of the information on the relevant theoretical and experimental researches, associated problems and unorthodox solutions is needed. Respective to the task, in this work author traces back the development of CS ET AAS, paying special attention to the promising from the point of view of simultaneous analysis research clusters. The examples of the theoretical models or experimental results presented are aimed to show complexity of the problem and by no means pretend to be final or optimal solutions. The material of the issue is considered to be useful for the researchers and engineers specialized in instrumental analytical chemistry.ΠΠ½ΡΠ΅ΡΠ΅Ρ Π°Π½Π°Π»ΠΈΡΠΈΠΊΠΎΠ² ΠΊ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (ET AAS) Ρ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° (Π‘S) ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ, ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΡΡΠ°Π² ΠΏΡΠΎΠ±Ρ. Π ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π°ΠΌΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ (ΠΠ) ΠΌΠ΅ΡΠΎΠ΄Π° Π°Π½Π°Π»ΠΈΠ·Π° (ΠΌΠ΅Π½ΡΡΠ΅ΠΉ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΠΈ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ), ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΠ’ ΠΠS ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅Π²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π°Π½Π°Π»ΠΈΠ·Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π²ΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ°ΡΡΠΈΡΠΈΡΡ ΠΊΡΡΠ³ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
Π²Π΅ΡΠ΅ΡΡΠ², ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΠΏΠ΅ΡΠΈΡΡ ΠΏΡΡΠΌΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²Π° ΠΌΠΈΠΊΡΠΎΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π±Π°Π·Ρ, ΡΡΠ΅Π±ΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΄Π° ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π½Π΅Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π΄Π»Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ. ΠΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π΄Π»Ρ Π²ΡΠ΅Ρ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠ»ΠΎΠ²ΠΈΡ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡΠΊΠ»ΡΡΠ°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΡ, ΡΠΏΠΎΡΠΎΠ±Π° Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°. ΠΠ»Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ
, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
, ΠΏΡΠΎΠ± Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ, Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ², ΡΠ°Π·Π±ΡΠΎΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΉ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ°Π·Π½ΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π»ΠΈΠ½ΠΈΠΉ ΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΡΠΌΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΈΡΠΏΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΠΈ, Π·Π°Π²ΠΈΡΡΡΠΈΠΌΠΈ ΠΎΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΏΡΠΎΠ±Ρ, ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ°ΡΡΠΎΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ°. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ² ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΡ
Ρ Π‘S ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π½Π° ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎΠ± ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ
ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π°Ρ
Π² AA ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
, ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°Ρ
ΠΈ ΠΏΡΠΈΠ΅ΠΌΠ°Ρ
ΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅, Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π°Π²ΡΠΎΡ ΠΏΡΠΎΡΠ»Π΅ΠΆΠΈΠ²Π°Π΅Ρ ΡΡΠ°ΠΏΡ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΡ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ CS ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ, ΠΎΠ±ΡΠ°ΡΠ°Ρ ΠΎΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ c ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΠ»ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Ρ, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ, Π΄Π»Ρ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ»Π°Π½ΠΎΠ²ΠΎΡΡΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΈ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΉ ΠΌΠ΅ΡΠ΅ Π½Π΅ ΠΏΡΠ΅ΡΠ΅Π½Π΄ΡΡΡ Π½Π° Π·Π°Π²Π΅ΡΡΠ΅Π½Π½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π΅Π½ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΠΎΠ², ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΠΈΡ
ΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
βKolibri-AASβ atomic absorption spectrometer for the simultaneous multielement analysis
A desktop continuum source electrothermal atomic absorption spectrometer for the simultaneous multielement determination was developed based on a βKolibri-2β polychromator and a MAES multichannel spectrum analyzer with a photodetector linear array. The device provided rapid monitoring of absorption spectra in the wavelength range of 190-360 nm with a single exposure time of 5 ms and atomization pulses of 1-2 seconds. The high luminosity of the spectrometer made it possible to use a low-power deuterium lamp as a continuum source. The heat treatment and the atomization of the samples was carried out in a longitudinally heated tube furnace with programmable heating. The processing of the spectral data, including the recording of the absorption, subtraction of the spectral background, linearization of the dependence of absorption on the concentration of atomic vapor, and the construction of the calibration graphs was performed automatically using a modified βAtomβ software algorithm. The analysis of the series of multielement solutions had shown that, despite the relatively low spectral resolution, the device allowed for the direct simultaneous determination of elements by resonance lines in a concentration range of up to 4 orders of magnitude. Furthermore, the detection limits of the elements were comparable to or lower than those for the sequential flame atomic absorption spectrometry or the inductively coupled plasma atomic emission analysis. The comparison of the results of direct determination of micro and macro components in water from the rivers of Gorny Altai and the Laboratory of Isotope-Geochemical Methods of Analysis of the Institute of Geology and Mineralogy (IGM), SB RAS confirmed the correctness of the analysis. At this stage of the development, βKolibri-AASβ spectrometers could replace flame AAS instruments for the sequential determination of elements in solutions in analytical laboratories. In the future, as the atomization technique and software are improved, the spectrometer could be used to analyze solid and liquid organic and inorganic substances.ΠΠ°ΡΡΠΎΠ»ΡΠ½ΡΠΉ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Ρ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ Π½Π° Π±Π°Π·Π΅ ΠΏΠΎΠ»ΠΈΡ
ΡΠΎΠΌΠ°ΡΠΎΡΠ° Β«ΠΠΎΠ»ΠΈΠ±ΡΠΈ-2Β» ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΠΠΠ‘ Ρ Π»ΠΈΠ½Π΅ΠΉΠΊΠΎΠΉ ΡΠΎΡΠΎΠ΄Π΅ΡΠ΅ΠΊΡΠΎΡΠΎΠ². ΠΡΠΈΠ±ΠΎΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅Ρ Π±ΡΡΡΡΡΠΉ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ 190-360 Π½ΠΌ Ρ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΊΡΠΏΠΎΠ·ΠΈΡΠΈΠΈ 5 ΠΌΡ ΠΏΡΠΈ 1-2 ΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠ°Ρ
Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ±Ρ. ΠΡΡΠΎΠΊΠ°Ρ ΡΠ²Π΅ΡΠΎΡΠΈΠ»Π° ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° Π΄Π΅ΠΉΡΠ΅ΡΠΈΠ΅Π²ΡΡ Π»Π°ΠΌΠΏΡ ΠΌΠ°Π»ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ. Π’Π΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΈ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠΎΠ±Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΡΡ Π² ΠΏΡΠΎΠ΄ΠΎΠ»ΡΠ½ΠΎ Π½Π°Π³ΡΠ΅Π²Π°Π΅ΠΌΠΎΠΉ ΡΡΡΠ±ΡΠ°ΡΠΎΠΉ ΠΏΠ΅ΡΠΈ Ρ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΡΠ΅ΠΌΡΠΌ Π½Π°Π³ΡΠ΅Π²ΠΎΠΌ. ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ°Ρ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΡ Π°Π±ΡΠΎΡΠ±ΡΠΈΠΈ, ΡΡΠ΅Ρ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ½Π°, Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·Π°ΡΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π°Π±ΡΠΎΡΠ±ΡΠΈΠΈ ΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π°ΡΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ° ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°Π΄ΡΠΈΡΠΎΠ²ΠΎΡΠ½ΡΡ
Π³ΡΠ°ΡΠΈΠΊΠΎΠ², ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Β«ΠΡΠΎΠΌΒ». ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΅ΡΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈΠ±ΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ ΠΏΡΡΠΌΠΎΠ΅ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΡΠΌ Π»ΠΈΠ½ΠΈΡΠΌ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ Π΄ΠΎ 4 ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ². ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΡΠ΅Π΄Π΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ°Π²Π½ΠΈΠΌΡΠΌΠΈ ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎΠΉ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΈΠ»ΠΈ Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΈΠΊΡΠΎ- ΠΈ ΠΌΠ°ΠΊΡΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π² Π²ΠΎΠ΄Π°Ρ
ΡΠ΅ΠΊ ΠΠΎΡΠ½ΠΎΠ³ΠΎ ΠΠ»ΡΠ°Ρ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎ-Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° ΠΠ½ΡΡΠΈΡΡΡΠ° Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ³ΠΈΠΈ Π‘Π Π ΠΠ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠ° Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Β«ΠΠΎΠ»ΠΈΠ±ΡΠΈ-ΠΠΠ‘Β» ΠΌΠΎΠΆΠ΅Ρ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π² Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΡΡ
ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΡΠ΅ ΠΠΠ‘ ΠΏΡΠΈΠ±ΠΎΡΡ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
. Π ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π΅, ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ²Π΅ΡΠ΄ΡΡ
ΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ
ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π΅ΡΠ΅ΡΡΠ²
Making ET AAS Determination Less Dependent on Vapourization Kinetics of the Analytes
The quantification of the analytes in ET AAS is normally attained by the measurement and integration of transient absorbance.Β High degree of atomization and constant vapour transportation rate for the analyte atoms in the absorption volume are consideredΒ to be crucial to grant correctness of the measurements. However, the second of these conditions has, in fact, never been met in theΒ commercial tube or tube-platform ET atomizers. The vapourization of the analyte occurs during temperature rise that affectsΒ vapour transport; vapourization temperature depends on matrix or presence of chemical modifier. In the analytical practice, theΒ problem is normally bypassed by using reference materials with physical and chemical properties similar to those of the sample.Β The general solution of the problem comes from the integration of running absorbance normalized with regard to vapourΒ transportation velocity. In this work, the approach was verified by measuring absorption signals for Ag, Cd, Mn, Pb and Tl in theΒ tube atomizer (without a platform), monitoring the temperature of the tube and calculating the instantaneous velocity of vapourΒ transfer and respective integration. The semi-empirical formula employed to describe vapour transport velocity included theΒ diffusion parameters specific for each element and a common constituent, attributed to gas expansion. The measurements andΒ numerical integration were performed using various temperature ramps for the analytes alone and those introduced togetherΒ with excessive amounts of Mg and Pd. The methodology suggested reduced the error associated with change of atomizationΒ kinetics from 20 to 2 %. In combination with chemical modification the measurement methodology does not require platformΒ atomization.KEYWORDSΒ ET AAS, vapour transport, chemical modification, normalization of integrated absorbanc
ΠΠΠΠΠΠΠΠ Π ΠΠΠΠΠΠΠΠΠΠΠΠ’ΠΠ«Π ΠΠ’ΠΠΠΠ-ΠΠΠ‘ΠΠ ΠΠ¦ΠΠΠΠΠ«Π ΠΠΠΠΠΠ. (ΠΠΠ’ΠΠ ΠΠ’Π£Π Π. Π§Π°ΡΡΡ 2)
The interest of analysts in continuum source (CS) electrothermal atomic absorption spectrometry (ET AAS) is due to the potential opportunity of observing and using, for quantitative measurements, an overview absorption spectrum representing the total composition of the sample. The simultaneous multi-element determination concept, combined with the fundamental advantages of the traditional ET AAS, such as the low spectral-line overlap and high sensitivity can have a revolutionary impact on the determination technology regarding the determination time, range of substances accessible for the analysis, simplification of the sampling procedure or direct micro-sampling.Β The implementing of respective analytical methodology, however, apart for improvement of the instrumentation, is associated with some specific problems. Equal for the elements to be determined experimental conditions exclude the selective optimization of the dilution rate, chemical modification or thermal pre-treatment. For the realistic, e.g. environmental, samples the determination task is aggravated by broad, up to several orders of magnitude, dispersion of elements contents, different sensitivity of the analytical lines and variety of vaporization and atomization rates controlled by the thermodynamic characteristics of the element and matrix, properties of the substrate, temperature of the gas and mechanism of mass transfer in the atomizer. Evidently, the development of the instrumentation and respective analytical methodology should be based on clear perception regarding the processes leading to the formation of analytical signals in CS ET AAS. For that, generalization of the information on the relevant theoretical and experimental researches, associated problems and unorthodox solutions is needed. Respective to the task, in this work author traces back the development of CS ET AAS, paying special attention to the promising from the point of view of simultaneous analysis research clusters. The examples of the theoretical models or experimental results presented are aimed to show complexity of the problem and by no means pretend to be final or optimal solutions. The material of the issue is considered to be useful for the researchers and engineers specialized in instrumental analytical chemistry.Keywords: multi-element atomic-absorption analysis, continuum source, simultaneous determination of elements, electrothermal atomizationDOI: http://dx.doi.org/10.15826/analitika.2018.22.4.001(Russian)D.KatskovΒ Tshwane University of Technology, Pretoria, 0001, South AfricaΠΠ½ΡΠ΅ΡΠ΅Ρ Π°Π½Π°Π»ΠΈΡΠΈΠΊΠΎΠ² ΠΊ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (ET AAS) Ρ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° (Π‘S) ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ, ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΡΡΠ°Π² ΠΏΡΠΎΠ±Ρ. Π ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π°ΠΌΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ (ΠΠ) ΠΌΠ΅ΡΠΎΠ΄Π° Π°Π½Π°Π»ΠΈΠ·Π° (ΠΌΠ΅Π½ΡΡΠ΅ΠΉ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΠΈΒ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ),Β ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΠ’ ΠΠS ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅Π²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π°Π½Π°Π»ΠΈΠ·Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π²ΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ°ΡΡΠΈΡΠΈΡΡ ΠΊΡΡΠ³ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
Π²Π΅ΡΠ΅ΡΡΠ², ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΠΏΠ΅ΡΠΈΡΡ ΠΏΡΡΠΌΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²Π° ΠΌΠΈΠΊΡΠΎΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π±Π°Π·Ρ, ΡΡΠ΅Π±ΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΄Π° ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π½Π΅Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π΄Π»Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ. ΠΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π΄Π»Ρ Π²ΡΠ΅Ρ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠ»ΠΎΠ²ΠΈΡ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡΠΊΠ»ΡΡΠ°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΡ, ΡΠΏΠΎΡΠΎΠ±Π° Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈΒ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°. ΠΠ»Ρ ΡΠ΅Π°Π»ΡΠ½ΡΡ
, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
, ΠΏΡΠΎΠ± Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ, Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ², ΡΠ°Π·Π±ΡΠΎΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΉ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ°Π·Π½ΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π»ΠΈΠ½ΠΈΠΉ ΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΡΠΌΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΈΡΠΏΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΠΈ, Π·Π°Π²ΠΈΡΡΡΠΈΠΌΠΈ ΠΎΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠ΅ΡΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΏΡΠΎΠ±Ρ, ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ°ΡΡΠΎΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ°. ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ² ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΡ
Ρ Π‘S ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π½Π° ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎΠ± ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ
ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π°Ρ
Π² AA ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
, ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°Ρ
ΠΈ ΠΏΡΠΈΠ΅ΠΌΠ°Ρ
ΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅, Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π°Π²ΡΠΎΡ ΠΏΡΠΎΡΠ»Π΅ΠΆΠΈΠ²Π°Π΅Ρ ΡΡΠ°ΠΏΡ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΡ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ CS ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ, ΠΎΠ±ΡΠ°ΡΠ°Ρ ΠΎΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ c ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΠ»ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Ρ, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ, Π΄Π»Ρ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ»Π°Π½ΠΎΠ²ΠΎΡΡΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΈ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΉ ΠΌΠ΅ΡΠ΅ Π½Π΅ ΠΏΡΠ΅ΡΠ΅Π½Π΄ΡΡΡ Π½Π° Π·Π°Π²Π΅ΡΡΠ΅Π½Π½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π΅Π½ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΠΎΠ², ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΠΈΡ
ΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°.Β ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΉ Π°ΡΠΎΠΌΠ½ΠΎ-Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·, ΠΈΡΡΠΎΡΠ½ΠΈΠΊ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°, ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΡΠΎΠΌΠΈΠ·Π°ΡΠΈΡ.DOI:Β http://dx.doi.org/10.15826/analitika.2018.22.4.00