43 research outputs found

    Simultaneous Determination of Metals in Coal with Low-Resolution Continuum Source Atomic Absorption Spectrometer and Filter Furnace Atomizer

    Get PDF
    The setup including low-resolution spectrometer with the charge-coupled device (CCD) detector, continuum radiation source and filter furnace (FF) atomizer was employed for direct simultaneous determination of Al, Fe, Mg, Cu and Mn in coal slurry. In the FF, sample vapour entered absorption volume by filtering through heated graphite. Absorption spectrum within 200–400 nm was repeatedly recorded during the atomization period with spectral resolution 0.3 nm. The output of the CCD elements was measured within each spectrum, atomic absorption at specific wavelengths measured and corrected with respect to the linearization algorithm, and integrated. Calibration was performed using carbon slurry impregnated by the analyte metals as well as with the analytes added to the slurries as multi-element solutions. The comparison showed preference of the second method, which provides for 60 % of measurements the results within 10 % deviation range from the certified reference data independent of concentration of the analyte. Low-resolution spectral instrument with fast CCD detection makes possible simultaneous detection of transient absorption signals for several elements. The use of continuum light source makes it possible to determine broad range of concentrations without slurry dilution.Keywords: Coal slurry, electrothermal atomic absorption spectrometry, simultaneous multi-element determination, filter furnace atomize

    Simultaneous Multi-Element Electrothermal Atomic Absorption Determination Using a Low Resolution CCD Spectrometer and Continuum Light Source: The Concept and Methodology

    Get PDF
    A low resolution CCD spectrometer with continuum light source and fast-heated graphite tube atomizer was employed for simultaneous multi element determination by electrothermal atomic absorption spectrometry (SMET AAS). The sample vaporization pulse was monitored by fast scanning of vapour spectra within the 190–410 nm wavelength range; absorption was measured at the CCD pixels corresponding to atomic resonance lines; function absorbance vs. concentration of atomic vapour was automatically linearized, and the modified signals integrated. The setup consisted of a D2 or Xe arc lamp, a spectral instrument with a half-width of transmittance profile 120 pm, a linear CCD array attached to a PC and a tube atomizer furnished with a carbon fibre collector. In the experiments simultaneous determination of 18 elements was performed in the mixed solutions at the mg L–1 to ΞΌg L–1 level, within 4–4.5 orders of magnitude linear concentration range. About 1–2 min was needed for the measurement and calculation. Limits of detection (LOD) for individual elements were 1.5–2 orders of magnitude higher than those in the single element ET AAS, but similar or below those in flame AAS. Further reduction of LODs and correction of possible spectral and chemical interferences are associated with optimization of the light source and atomization programme and modification of the calculation algorithm.Keywords: Electrothermal Atomic Absorption Spectrometry, Simultaneous Multi-element Determination, CCD Spectrometer, Fast-heated Graphite Tube Atomize

    Аn introduction to multi-element atomic-absorption analysis

    Full text link
    The interest of analysts in continuum source (CS) electrothermal atomic absorption spectrometry (ET AAS) is due to the potential opportunity of observing and using, for quantitative measurements, an overview absorption spectrum representing the total composition of the sample. The simultaneous multi-element determination concept, combined with the fundamental advantages of the traditional ET AAS, such as the low spectral-line overlap and high sensitivity can have a revolutionary impact on the determination technology regarding the determination time, range of substances accessible for the analysis, simplification of the sampling procedure or direct micro-sampling. The implementing of respective analytical methodology, however, apart for improvement of the instrumentation, is associated with some specific problems. Equal for the elements to be determined experimental conditions exclude the selective optimization of the dilution rate, chemical modification or thermal pre-treatment. For the realistic, e.g. environmental, samples the determination task is aggravated by broad, up to several orders of magnitude, dispersion of elements contents, different sensitivity of the analytical lines and variety of vaporization and atomization rates controlled by the thermodynamic characteristics of the element and matrix, properties of the substrate, temperature of the gas and mechanism of mass transfer in the atomizer. Evidently, the development of the instrumentation and respective analytical methodology should be based on clear perception regarding the processes leading to the formation of analytical signals in CS ET AAS. For that, generalization of the information on the relevant theoretical and experimental researches, associated problems and unorthodox solutions is needed. Respective to the task, in this work author traces back the development of CS ET AAS, paying special attention to the promising from the point of view of simultaneous analysis research clusters. The examples of the theoretical models or experimental results presented are aimed to show complexity of the problem and by no means pretend to be final or optimal solutions. The material of the issue is considered to be useful for the researchers and engineers specialized in instrumental analytical chemistry.Π˜Π½Ρ‚Π΅Ρ€Π΅Ρ Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊΠΎΠ² ΠΊ элСктротСрмичСской Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционной спСктромСтрии (ET AAS) с источником Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ спСктра (Π‘S) обусловлСн пСрспСктивой использования для количСствСнных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€Π½ΠΎΠ³ΠΎ спСктра поглощСния, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±Ρ‰ΠΈΠΉ состав ΠΏΡ€ΠΎΠ±Ρ‹. Π’ сочСтании с ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ достоинствами Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционного (АА) ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π°Π½Π°Π»ΠΈΠ·Π° (мСньшСй Π² сравнСнии с эмиссионным спСктром Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ налоТСния ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΈ высокой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ), концСпция ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π•Π’ ААS опрСдСлСния элСмСнтов ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ воздСйствиС Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ Π°Π½Π°Π»ΠΈΠ·Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ΠΊΡ€ΡƒΠ³ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… вСщСств, ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ прямоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ состава ΠΌΠΈΠΊΡ€ΠΎΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². РСализация этого ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π±Π°Π·Ρ‹, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ряда спСцифичСских ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π½Π΅Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ одноэлСмСнтного опрСдСлСния. ΠžΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ для всСх элСмСнтов условия Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ сСлСктивной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ стСпСни разбавлСния, способа химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΠ»ΠΈ тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ вСщСства. Для Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ…, ΠΏΡ€ΠΎΠ± Π°Π½Π°Π»ΠΈΠ· ослоТнСн Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… порядков, разбросом содСрТаний элСмСнтов, Ρ€Π°Π·Π½ΠΎΠΉ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ аналитичСских Π»ΠΈΠ½ΠΈΠΉ ΠΈ вариациями ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ испарСния ΠΈ стСпСни Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, зависящими ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ тСрмодинамичСскиС свойства элСмСнта ΠΈ ΠΏΡ€ΠΎΠ±Ρ‹, свойства повСрхности ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ массопСрСноса. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ многоэлСмСнтного опрСдСлСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ спСцифики процСссов формирования абсорбционного сигнала ΠΏΡ€ΠΈ измСрСниях с Π‘S источником, основанноС Π½Π° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎΠ± извСстных тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… Π² AA исслСдованиях, сопряТСнных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ… ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ°Ρ… ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. БоотвСтствСнно этой Π·Π°Π΄Π°Ρ‡Π΅, Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π°Π²Ρ‚ΠΎΡ€ прослСТиваСт этапы освоСния Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционной спСктромСтрии с CS источником, обращая особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° пСрспСктивныС c Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ многоэлСмСнтного опрСдСлСния направлСния исслСдований ΠΈ тСхничСскиС ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ тСорСтичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΠ»ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Ρ‹, Π² основном, для ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ многоплановости ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΉ ΠΌΠ΅Ρ€Π΅ Π½Π΅ ΠΏΡ€Π΅Ρ‚Π΅Π½Π΄ΡƒΡŽΡ‚ Π½Π° Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π΅Π½ для исслСдоватСлСй ΠΈ конструкторов, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² области ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°

    β€œKolibri-AAS” atomic absorption spectrometer for the simultaneous multielement analysis

    Full text link
    A desktop continuum source electrothermal atomic absorption spectrometer for the simultaneous multielement determination was developed based on a β€œKolibri-2” polychromator and a MAES multichannel spectrum analyzer with a photodetector linear array. The device provided rapid monitoring of absorption spectra in the wavelength range of 190-360 nm with a single exposure time of 5 ms and atomization pulses of 1-2 seconds. The high luminosity of the spectrometer made it possible to use a low-power deuterium lamp as a continuum source. The heat treatment and the atomization of the samples was carried out in a longitudinally heated tube furnace with programmable heating. The processing of the spectral data, including the recording of the absorption, subtraction of the spectral background, linearization of the dependence of absorption on the concentration of atomic vapor, and the construction of the calibration graphs was performed automatically using a modified β€œAtom” software algorithm. The analysis of the series of multielement solutions had shown that, despite the relatively low spectral resolution, the device allowed for the direct simultaneous determination of elements by resonance lines in a concentration range of up to 4 orders of magnitude. Furthermore, the detection limits of the elements were comparable to or lower than those for the sequential flame atomic absorption spectrometry or the inductively coupled plasma atomic emission analysis. The comparison of the results of direct determination of micro and macro components in water from the rivers of Gorny Altai and the Laboratory of Isotope-Geochemical Methods of Analysis of the Institute of Geology and Mineralogy (IGM), SB RAS confirmed the correctness of the analysis. At this stage of the development, β€œKolibri-AAS” spectrometers could replace flame AAS instruments for the sequential determination of elements in solutions in analytical laboratories. In the future, as the atomization technique and software are improved, the spectrometer could be used to analyze solid and liquid organic and inorganic substances.ΠΠ°ΡΡ‚ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционный спСктромСтр с источником Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ спСктра ΠΈ элСктротСрмичСским Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ для ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ опрСдСлСния элСмСнтов сконструирован Π½Π° Π±Π°Π·Π΅ ΠΏΠΎΠ»ΠΈΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΡ€Π° Β«ΠšΠΎΠ»ΠΈΠ±Ρ€ΠΈ-2Β» ΠΈ многоканального Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° спСктров МАЭБ с Π»ΠΈΠ½Π΅ΠΉΠΊΠΎΠΉ Ρ„ΠΎΡ‚ΠΎΠ΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΡ€ΠΈΠ±ΠΎΡ€ осущСствляСт быстрый ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ спСктра поглощСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ 190-360 Π½ΠΌ с Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΠΉ экспозиции 5 мс ΠΏΡ€ΠΈ 1-2 сСкундных ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°Ρ… Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ±Ρ‹. Высокая свСтосила спСктромСтра позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС источника излучСния Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ спСктра Π΄Π΅ΠΉΡ‚Π΅Ρ€ΠΈΠ΅Π²ΡƒΡŽ Π»Π°ΠΌΠΏΡƒ ΠΌΠ°Π»ΠΎΠΉ мощности. Π’Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ атомизация ΠΏΡ€ΠΎΠ±Ρ‹ проводятся Π² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ Π½Π°Π³Ρ€Π΅Π²Π°Π΅ΠΌΠΎΠΉ Ρ‚Ρ€ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ ΠΏΠ΅Ρ‡ΠΈ с ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ Π½Π°Π³Ρ€Π΅Π²ΠΎΠΌ. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ абсорбции, ΡƒΡ‡Π΅Ρ‚ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„ΠΎΠ½Π°, Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ зависимости абсорбции ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π°Ρ‚ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π° ΠΈ построСниС Π³Ρ€Π°Π΄ΡƒΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², производится автоматичСски с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ «Атом». На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π°Π½Π°Π»ΠΈΠ·Π° сСрии многоэлСмСнтных растворов ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ, нСсмотря Π½Π° ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠ΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠ±ΠΎΡ€ позволяСт ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ прямоС ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ элСмСнтов ΠΏΠΎ рСзонансным линиям Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π΄ΠΎ 4 порядков. ΠŸΡ€ΠΈ этом ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ обнаруТСния элСмСнтов ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сравнимыми ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ для ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционного Π°Π½Π°Π»ΠΈΠ·Π° с ΠΏΠ»Π°ΠΌΠ΅Π½Π½ΠΎΠΉ Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΈΠ»ΠΈ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-эмиссионного Π°Π½Π°Π»ΠΈΠ·Π° с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. БопоставлСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² прямого опрСдСлСния ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π² Π²ΠΎΠ΄Π°Ρ… Ρ€Π΅ΠΊ Π“ΠΎΡ€Π½ΠΎΠ³ΠΎ Алтая с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎ-гСохимичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ³ΠΈΠΈ БО РАН ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π°Π½Π°Π»ΠΈΠ·Π°. На Π΄Π°Π½Π½ΠΎΠΌ этапС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ спСктромСтр Β«ΠšΠΎΠ»ΠΈΠ±Ρ€ΠΈ-ААБ» ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π² аналитичСских лабораториях ΠΏΠ»Π°ΠΌΠ΅Π½Π½Ρ‹Π΅ ААБ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‹ для ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ опрСдСлСния элСмСнтов Π² растворах. Π’ пСрспСктивС, ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния, прСдполагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ спСктромСтр для Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… ΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ… органичСских ΠΈ нСорганичСских вСщСств

    Making ET AAS Determination Less Dependent on Vapourization Kinetics of the Analytes

    Get PDF
    The quantification of the analytes in ET AAS is normally attained by the measurement and integration of transient absorbance.Β High degree of atomization and constant vapour transportation rate for the analyte atoms in the absorption volume are consideredΒ to be crucial to grant correctness of the measurements. However, the second of these conditions has, in fact, never been met in theΒ commercial tube or tube-platform ET atomizers. The vapourization of the analyte occurs during temperature rise that affectsΒ vapour transport; vapourization temperature depends on matrix or presence of chemical modifier. In the analytical practice, theΒ problem is normally bypassed by using reference materials with physical and chemical properties similar to those of the sample.Β The general solution of the problem comes from the integration of running absorbance normalized with regard to vapourΒ transportation velocity. In this work, the approach was verified by measuring absorption signals for Ag, Cd, Mn, Pb and Tl in theΒ tube atomizer (without a platform), monitoring the temperature of the tube and calculating the instantaneous velocity of vapourΒ transfer and respective integration. The semi-empirical formula employed to describe vapour transport velocity included theΒ diffusion parameters specific for each element and a common constituent, attributed to gas expansion. The measurements andΒ numerical integration were performed using various temperature ramps for the analytes alone and those introduced togetherΒ with excessive amounts of Mg and Pd. The methodology suggested reduced the error associated with change of atomizationΒ kinetics from 20 to 2 %. In combination with chemical modification the measurement methodology does not require platformΒ atomization.KEYWORDSΒ ET AAS, vapour transport, chemical modification, normalization of integrated absorbanc

    Π’Π’Π•Π”Π•ΠΠ˜Π• Π’ ΠœΠΠžΠ“ΠžΠ­Π›Π•ΠœΠ•ΠΠ’ΠΠ«Π™ АВОМНО-ΠΠ‘Π‘ΠžΠ Π‘Π¦Π˜ΠžΠΠΠ«Π™ ΠΠΠΠ›Π˜Π—. (Π›Π˜Π’Π•Π ΠΠ’Π£Π Π. Π§Π°ΡΡ‚ΡŒ 2)

    No full text
    The interest of analysts in continuum source (CS) electrothermal atomic absorption spectrometry (ET AAS) is due to the potential opportunity of observing and using, for quantitative measurements, an overview absorption spectrum representing the total composition of the sample. The simultaneous multi-element determination concept, combined with the fundamental advantages of the traditional ET AAS, such as the low spectral-line overlap and high sensitivity can have a revolutionary impact on the determination technology regarding the determination time, range of substances accessible for the analysis, simplification of the sampling procedure or direct micro-sampling.Β  The implementing of respective analytical methodology, however, apart for improvement of the instrumentation, is associated with some specific problems. Equal for the elements to be determined experimental conditions exclude the selective optimization of the dilution rate, chemical modification or thermal pre-treatment. For the realistic, e.g. environmental, samples the determination task is aggravated by broad, up to several orders of magnitude, dispersion of elements contents, different sensitivity of the analytical lines and variety of vaporization and atomization rates controlled by the thermodynamic characteristics of the element and matrix, properties of the substrate, temperature of the gas and mechanism of mass transfer in the atomizer. Evidently, the development of the instrumentation and respective analytical methodology should be based on clear perception regarding the processes leading to the formation of analytical signals in CS ET AAS. For that, generalization of the information on the relevant theoretical and experimental researches, associated problems and unorthodox solutions is needed. Respective to the task, in this work author traces back the development of CS ET AAS, paying special attention to the promising from the point of view of simultaneous analysis research clusters. The examples of the theoretical models or experimental results presented are aimed to show complexity of the problem and by no means pretend to be final or optimal solutions. The material of the issue is considered to be useful for the researchers and engineers specialized in instrumental analytical chemistry.Keywords: multi-element atomic-absorption analysis, continuum source, simultaneous determination of elements, electrothermal atomizationDOI: http://dx.doi.org/10.15826/analitika.2018.22.4.001(Russian)D.KatskovΒ Tshwane University of Technology, Pretoria, 0001, South AfricaΠ˜Π½Ρ‚Π΅Ρ€Π΅Ρ Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊΠΎΠ² ΠΊ элСктротСрмичСской Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционной спСктромСтрии (ET AAS) с источником Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ спСктра (Π‘S) обусловлСн пСрспСктивой использования для количСствСнных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€Π½ΠΎΠ³ΠΎ спСктра поглощСния, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±Ρ‰ΠΈΠΉ состав ΠΏΡ€ΠΎΠ±Ρ‹. Π’ сочСтании с ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ достоинствами Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционного (АА) ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π°Π½Π°Π»ΠΈΠ·Π° (мСньшСй Π² сравнСнии с эмиссионным спСктром Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ налоТСния ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΈΒ  высокой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ),Β  концСпция ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π•Π’ ААS опрСдСлСния элСмСнтов ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ воздСйствиС Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ Π°Π½Π°Π»ΠΈΠ·Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ΠΊΡ€ΡƒΠ³ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… вСщСств, ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π΅ΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ прямоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ состава ΠΌΠΈΠΊΡ€ΠΎΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². РСализация этого ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠΌΠΈΠΌΠΎ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π±Π°Π·Ρ‹, Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ряда спСцифичСских ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π½Π΅Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ одноэлСмСнтного опрСдСлСния. ΠžΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ для всСх элСмСнтов условия Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ сСлСктивной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ стСпСни разбавлСния, способа химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈΒ  ΠΈΠ»ΠΈ тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ вСщСства. Для Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ…, ΠΏΡ€ΠΎΠ± Π°Π½Π°Π»ΠΈΠ· ослоТнСн Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… порядков, разбросом содСрТаний элСмСнтов, Ρ€Π°Π·Π½ΠΎΠΉ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ аналитичСских Π»ΠΈΠ½ΠΈΠΉ ΠΈ вариациями ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ испарСния ΠΈ стСпСни Π°Ρ‚ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, зависящими ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ тСрмодинамичСскиС свойства элСмСнта ΠΈ ΠΏΡ€ΠΎΠ±Ρ‹, свойства повСрхности ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ массопСрСноса. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ многоэлСмСнтного опрСдСлСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ спСцифики процСссов формирования абсорбционного сигнала ΠΏΡ€ΠΈ измСрСниях с Π‘S источником, основанноС Π½Π° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎΠ± извСстных тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… Π² AA исслСдованиях, сопряТСнных ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ… ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ°Ρ… ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. БоотвСтствСнно этой Π·Π°Π΄Π°Ρ‡Π΅, Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π°Π²Ρ‚ΠΎΡ€ прослСТиваСт этапы освоСния Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционной спСктромСтрии с CS источником, обращая особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° пСрспСктивныС c Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ многоэлСмСнтного опрСдСлСния направлСния исслСдований ΠΈ тСхничСскиС ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ тСорСтичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΠ»ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Ρ‹, Π² основном, для ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ многоплановости ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΉ ΠΌΠ΅Ρ€Π΅ Π½Π΅ ΠΏΡ€Π΅Ρ‚Π΅Π½Π΄ΡƒΡŽΡ‚ Π½Π° Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π΅Π½ для исслСдоватСлСй ΠΈ конструкторов, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² области ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°.Β ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: многоэлСмСнтный Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционный Π°Π½Π°Π»ΠΈΠ·, источник Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ спСктра, ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ элСмСнтов, элСктротСрмичСская атомизация.DOI:Β http://dx.doi.org/10.15826/analitika.2018.22.4.00
    corecore