8 research outputs found

    Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c

    No full text
    Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels.Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT).Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise). After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise) while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention). Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p < 0.0132). Correlation analysis suggested an association between both miRNAs and TGF-beta1 mRNA (all p ≤ 0.006, r ≥ 0.74) as well as change in speed at IAT and change in miR-222 levels (p = 0.024, r = 0.46).Conclusions: HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations

    ZFP226 is a novel artificial transcription factor for selective activation of tumor suppressor KIBRA

    Full text link
    KIBRA has been suggested as a key regulator of the hippo pathway, regulating organ size, cell contact inhibition as well as tissue regeneration and tumorigenesis. Recently, alterations of KIBRA expression caused by promotor methylation have been reported for several types of cancer. Our current study aimed to design an artificial transcription factor capable of re-activating expression of the tumor suppressor KIBRA and the hippo pathway. We engineered a new gene named ‘ZFP226′ encoding for a ~23 kDa fusion protein. ZFP226 belongs to the Cys2-His2 zinc finger type and recognizes a nine base-pair DNA sequence 5′-GGC-GGC-GGC-3′ in the KIBRA core promoter P1a. ZFP226 showed nuclear localization in human immortalized kidney epithelial cells and activated the KIBRA core promoter (p < 0.001) resulting in significantly increased KIBRA mRNA and protein levels (p < 0.001). Furthermore, ZFP226 led to activation of hippo signaling marked by elevated YAP and LATS phosphorylation. In Annexin V flow cytometry assays ZFP226 overexpression showed strong pro-apoptotic capacity on MCF-7 breast cancer cells (p < 0.01 early-, p < 0.001 late-apoptotic cells). We conclude that the artificial transcription factor ZFP226 can be used for target KIBRA and hippo pathway activation. This novel molecule may represent a molecular tool for the development of future applications in cancer treatment

    Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels

    No full text
    Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT) on miR-126-3p and -5p levels.Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years) were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control group performed three exercise sessions/week for 25 min &lt;75% of maximum heart rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from earlobes.Results: No exercise-induced increase in miR-126 levels was detected at baseline, neither in the LIT (after 25 min low-intensity running) nor the HIIT groups (after 4 min of high-intensity running). After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p &lt; 0.05). An increase for both, miR-126-3p and -5p levels (all p &lt; 0.05, pre- vs. during and post-exercise) was detected in the proHIIT group. Between group analysis revealed that miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units (all p &lt; 0.01), respectively, compared to HIIT (−1.05 ± 2.6 units).Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126

    Additional file 1: Table S1. of Promoter methylation inhibits expression of tumor suppressor KIBRA in human clear cell renal cell carcinoma

    No full text
    Clinicopathological characteristics of the study cohort. Table S2 Sequences and positions of oligonucleotides used in this study. Figure S1 KIBRA CpG islands were detected using “CpG Island searcher.” Two CpG islands were detected: CpG II with 205 bp and CpG I with 764 bp. Parameter settings: %GC = 55%, CpGobs/CpGexp = 0.65, lengths > 200 bp, distance = 100 bp. Position of KIBRA promoter regions P1b and P1a is indicated according to TSS1a (NM_015238). Figure S2 Hematoxylin and eosin staining from adjacent benign tissue (Ctrl; I/II) and ccRCC tissue (III/IV) used for the analysis (DOCX 3044 kb

    Cryptogenic stroke and small fiber neuropathy of unknown etiology in patients with alpha-galactosidase A -10T genotype

    Full text link
    Background: Fabry disease (FD) is a multisystemic disorder with typical neurological manifestations such as stroke and small fiber neuropathy (SFN), caused by mutations of the alpha-galactosidase A (GLA) gene. We analyzed 15 patients carrying the GLA haplotype -10C>T [rs2071225], IVS2-81_-77delCAGCC [rs5903184], IVS4-16A>G [rs2071397], and IVS6-22C>T [rs2071228] for potential neurological manifestations. Methods and results: Patients were retrospectively analyzed for stroke, transient ischemic attack (TIA), white matter lesions (WML) and SFN with neuropathic pain. Functional impact of the haplotype was determined by molecular genetic methods including real-time PCR, exon trapping, promoter deletion constructs and electrophoretic mobility shift assays. Symptomatic -10T allele carriers suffered from stroke, TIA, WML, and SFN with neuropathic pain. Patients’ mean GLA mRNA expression level was reduced to ~70% (p < 0.0001) and a dose-dependent effect of the -10T allele on GLA mRNA expression was observed in hemi/homozygous compared to heterozygous patients (p < 0.0001). Molecular analyzes revealed that the -10T allele resulted in a reduced promoter activity and an altered transcription factor binding, while a functional relevance of the co-segregated intronic variants was excluded by exon trapping. Conclusions: Based on this complementary approach of clinical observation and functional testing, we conclude that the GLA -10T allele could be causal for the observed neurological manifestations. Future studies are needed to clarify whether affected patients benefit from GLA enzyme replacement therapy for end-organ damage prevention.<br
    corecore