316 research outputs found

    Falling in Love with a Film (Series)

    Get PDF
    Judging works of art is one thing. Loving a work of art is something else. When you visit a museum like the Louvre you make hundreds of judgements in the space of just a couple of hours. But you may grow to love only one or a handful of works over the course of your entire life. Depending on the art form you are most aligned with, this can be a painting, a novel, a poem, a song, a work of architecture, or some other art object or performance. As it happens, however, we have fallen in love with a series of films: Before Sunrise, Before Sunset, and Before Midnight. But what does it mean to love a film? What’s the difference between liking a film, loving a film, and being a film lover? How rational or irrational is it to fall in love with a film? What are the constitutive elements of such a love? These are the questions we seek to address in this paper

    A Low UVB Dose, with the Potential to Trigger a Protective p53-Dependent Gene Program, Increases the Resilience of Keratinocytes against Future UVB Insults

    Get PDF
    One protein central in the response of human keratinocytes to ultraviolet B damage is p53. By transactivating genes involved in either cell cycle arrest or DNA repair, p53 has a leading role in the recovery from this damage. Considering this role, we wished to investigate whether the triggering of a p53-dependent gene program by repetitive ultraviolet B (UVB) exposure can induce an adaptive response in human skin cells. In particular, we examined two p53-target genes, p21/WAF1 and p53R2, with a crucial role in p53-induced cell cycle arrest and p53-induced DNA repair respectively. Exposure to a mild UVB dose was able to induce an adaptive response in human keratinocytes, leading to increased survival of cells that maintain their capacity to repair DNA damage upon exposure to apoptotic doses of UVB. Our study indicates that this adaptation response is only achieved if the interval between subsequent UVB insults allows sufficient time for the p53-induced protective gene program to be induced. Our results also demonstrate that small but quickly recurring UVB exposures are as harmful as one intense, continual exposure to UVB irradiation. Future research will be oriented toward investigating alternative ways to induce an adaptive response without pre-exposing the cells to UV

    Abortigenic but not neurotropic equine herpes virus 1 modulates the interferon antiviral defense

    Get PDF
    Equine herpesvirus 1 (EHV1) is considered as a major pathogen of Equidae, causing symptoms from mild respiratory disease to late-termabortion and neurological disorders. Different EHV1 strains circulating in the field have been characterized to be of abortigenic or neurovirulent phenotype. Both variants replicate in a plaque-wise manner in the epithelium of the upper respiratory tract (URT), where the abortigenic strains induce more prominent viral plaques, compared to the neurovirulent strains. Considering the differences in replication at the URT, we hypothesized that abortigenic strains may show an increased ability to modulate the type I IFN secretion/signaling pathway, compared to strains that display the neurovirulent phenotype. Here, we analyze IFN levels induced by abortigenic and neurovirulent EHV1 using primary respiratory epithelial cells (EREC) and respiratory mucosa ex vivo explants. Similar levels of IFN alpha (similar to 70 U/ml) were detected in explants inoculated with both types of EHV1 strains from 48 to 72 hpi. Second, EREC and mucosa explants were treated with recombinant equine IFN alpha (rEqIFN alpha) or Ruxolitinib (Rux), an IFN signaling inhibitor, prior to and during inoculation with abortigenic or neurovirulent EHV1. Replication of both EHV1 variants was suppressed by rEqIFN alpha. Further, addition of Rux increased replication in a concentration-dependent manner, indicating an IFN-susceptibility for both variants. However, in two out of three horses, at a physiological concentration of 100 U/ml of rEqIFN alpha, an increase in abortigenic EHV1 replication was observed compared to 10 U/ml of rEqIFN alpha, which was not observed for the neurovirulent strains. Moreover, in the presence of Rux, the plaque size of the abortigenic variants remained unaltered, whereas the typically smaller viral plaques induced by the neurovirulent variants became larger. Overall, our results demonstrate the importance of IFN alpha in the control of EHV1 replication in the URT for both abortigenic and neurovirulent variants. In addition, our findings support the speculation that abortigenic variants of EHV1 may have developed anti-IFN mechanisms that appear to be absent or less pronounced in neurovirulent EHV1 strains

    Access to a main alphaherpesvirus receptor, located basolaterally in the respiratory epithelium, is masked by intercellular junctions

    Get PDF
    The respiratory epithelium of humans and animals is frequently exposed to alphaherpesviruses, originating from either external exposure or reactivation from latency. To date, the polarity of alphaherpesvirus infection in the respiratory epithelium and the role of respiratory epithelial integrity herein has not been studied. Equine herpesvirus type 1 (EHV1), a well-known member of the alphaherpesvirus family, was used to infect equine respiratory mucosal explants and primary equine respiratory epithelial cells (EREC), grown at the air-liquid interface. EHV1 binding to and infection of mucosal explants was greatly enhanced upon destruction of the respiratory epithelium integrity with EGTA or N-acetylcysteine. EHV1 preferentially bound to and entered EREC at basolateral cell surfaces. Restriction of infection via apical inoculation was overcome by disruption of intercellular junctions. Finally, basolateral but not apical EHV1 infection of EREC was dependent on cellular N-linked glycans. Overall, our findings demonstrate that integrity of the respiratory epithelium is crucial in the host's innate defence against primary alphaherpesvirus infections. In addition, by targeting a basolaterally located receptor in the respiratory epithelium, alphaherpesviruses have generated a strategy to efficiently escape from host defence mechanisms during reactivation from latency
    • …
    corecore