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Equine herpesvirus 1 (EHV1) is considered as a major pathogen of Equidae, causing

symptoms frommild respiratory disease to late-term abortion and neurological disorders.

Different EHV1 strains circulating in the field have been characterized to be of abortigenic

or neurovirulent phenotype. Both variants replicate in a plaque-wise manner in the

epithelium of the upper respiratory tract (URT), where the abortigenic strains induce

more prominent viral plaques, compared to the neurovirulent strains. Considering the

differences in replication at the URT, we hypothesized that abortigenic strains may show

an increased ability to modulate the type I IFN secretion/signaling pathway, compared to

strains that display the neurovirulent phenotype. Here, we analyze IFN levels induced by

abortigenic and neurovirulent EHV1 using primary respiratory epithelial cells (EREC) and

respiratory mucosa ex vivo explants. Similar levels of IFNα (∼70 U/ml) were detected

in explants inoculated with both types of EHV1 strains from 48 to 72 hpi. Second,

EREC and mucosa explants were treated with recombinant equine IFNα (rEqIFNα) or

Ruxolitinib (Rux), an IFN signaling inhibitor, prior to and during inoculation with abortigenic

or neurovirulent EHV1. Replication of both EHV1 variants was suppressed by rEqIFNα.

Further, addition of Rux increased replication in a concentration-dependent manner,

indicating an IFN-susceptibility for both variants. However, in two out of three horses, at

a physiological concentration of 100 U/ml of rEqIFNα, an increase in abortigenic EHV1

replication was observed compared to 10 U/ml of rEqIFNα, which was not observed

for the neurovirulent strains. Moreover, in the presence of Rux, the plaque size of

the abortigenic variants remained unaltered, whereas the typically smaller viral plaques

induced by the neurovirulent variants became larger. Overall, our results demonstrate the

importance of IFNα in the control of EHV1 replication in the URT for both abortigenic and

neurovirulent variants. In addition, our findings support the speculation that abortigenic

variants of EHV1 may have developed anti-IFN mechanisms that appear to be absent or

less pronounced in neurovirulent EHV1 strains.
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INTRODUCTION

Every 24 h, 100,000 liters of air with potential pathogens pass
through the respiratory system of an adult horse. Depending on
the size of the pathogen particle, it can penetrate into the upper
or lower respiratory tract (Derksen, 1999). A highly prevalent
pathogen in horse populations worldwide that causes infection
via the respiratory route is equine herpes virus 1 (EHV1). EHV1
is a member of the Varicellovirus genus in the Alphaherpesvirinae
subfamily. The virus spreads via respiratory secretions during
direct or indirect contact. EHV1 replicates in the epithelium
of the upper respiratory tract (URT), causing mild respiratory
problems. Via single infected local immune cells, EHV1 can
penetrate through the basement membrane (BM), enter the
blood stream and disseminate to the pregnant uterus or the
central nervous system. Infected leukocytes may transmit virus
to endothelial cells of the endometrial or central nervous system
vasculature, resulting in thromboembolic disease and ischemia,
causing neonatal foal death, late term abortion, or neurological
disorders, such as hind limb ataxia (Edington et al., 1986, 1991;
Smith et al., 1993, 2004; Smith, 1997; van der Meulen et al., 2000;
Smith and Borchers, 2001; Goehring et al., 2006; Gryspeerdt et al.,
2010; Laval et al., 2015). The occurrence of clinical symptoms
has extensive economical consequences caused by treatment,
biosafety, and quarantine procedures and interruption of training
and competition times (Lunn et al., 2009). Many horses become
latently infected early in life and remain carriers of the virus
(Kydd et al., 1994; Slater et al., 1994).

Different EHV1 strains circulating in the field have been
characterized as abortigenic or neurovirulent phenotypes, based
on a single nucleotide polymorphism in the catalytic subunit
of the viral DNA polymerase (Nugent et al., 2006). Lunn
et al. (2009) demonstrated that the majority of equid herpes
myeloencephalopathy (EHM) outbreaks are associated with
the neurovirulent variants, whereas most abortions involved
abortigenic strains. In vivo and ex vivo studies indicated that
both EHV1 phenotypes replicate in a plaque-wise manner in the
epithelium of the URT (Gryspeerdt et al., 2010; Vandekerckhove
et al., 2010). Abortigenic variants replicate more efficiently in
the URT, evidenced by a higher amount of larger viral plaques,
whereas the neurovirulent strains infect local immune cells
much earlier [24 h post inoculation (hpi)] in infection compared
to abortigenic strains (36 hpi). This correlates with a cell-
associated viremia earlier in infection, which might favor onset
of neurological disease (Gryspeerdt et al., 2010; Vandekerckhove
et al., 2010; Laval et al., 2015).

As the initial exposure and primary viral replication occur in
the epithelium of the URT, an effective innate immune response
to EHV1 at this anatomical site is of key importance (Alberts

et al., 2002). An overlying mucoprotein network, epithelial

cell layers and their intercellular bridges form the first innate
physical barrier, which complicates the attachment and invasion

of pathogens into the epithelial cells (Vareille et al., 2011;
Yang et al., 2012; Volsko, 2013; Van Cleemput et al., 2017).
Moreover, these cells have the ability to secrete peptides, such

as lactoferrins, defensins and nitric oxide, which have direct

antimicrobial activities (Brandtzaeg, 1997; Oppenheim et al.,

2003). Another key player in the host defense against viral
infections of the URT is the interferon (IFN) system (Samuel,
2012). IFNs are secreted cytokines, which establish an antiviral
state in cells (De Maeyer and De Maeyer-Guignard, 1988, 1998).
Three types of IFN (α/β, λ, and γ) can be distinguished and
bind to distinctive but related cell surface receptor complexes
(de Weerd and Nguyen, 2012). During the first critical hours
of a viral infection of respiratory epithelial cells, IFNα, -β
(type I IFN), and IFN-λ (type III IFN) are secreted and show
similar antiviral activities via a highly similar signal transduction
cascade. Type II IFN or IFNγ binds to the IFNGR complex
and is a key mediator of virus-specific cellular immunity
(Sadler and Williams, 2008). Conserved motifs within classes of
potential pathogens are recognized through specific pathogen
recognition receptors (PRR), such as toll-like receptors (TLR),
expressed by professional immune cells and the majority of
non-hematopoietic cells, including epithelial cells (McClure and
Massari, 2014). Airway epithelial cells express TLR1 to TLR6
and TLR9, which are located either in endosomes or at the
external side of the cellular plasma membrane (Muir et al., 2004;
Platz et al., 2004; Mayer et al., 2007; Vareille et al., 2011). The
activation of PRR triggers an intracellular pathway leading to
the production and release of type I IFN from infected cells.
IFNα and β (type I IFN) act similarly by binding in an autocrine
or paracrine way to the heterodimer receptor IFNAR-1 and−2.
Once bound to their receptor, they signal via the Janus kinase
(JAK) signal transducer and activator of transcription (STAT)
signaling cascade, to induce the transcription of hundreds of
“IFN-stimulated genes” (ISG). The most important ISG-encoded
proteins are the RNA-dependent protein kinase (PKR), 2′,5′-
oligoadenylate synthetase (OAS) and RNase L, and Mx protein
GTPases, which target several steps in the herpesvirus replication
(Alberts et al., 2002; Sadler and Williams, 2008; Rentsch and
Zimmer, 2011; Schoggins and Rice, 2011; de Weerd and Nguyen,
2012).

The early innate immune responses, guided by IFN, control
the pathogen, and orchestrate the subsequent adaptive immune
response against the invading pathogens. Many respiratory
viruses, including alphaherpesviruses, have evolved multiple
strategies to escape from the antiviral properties of IFN and
persist in immuno-competent hosts by interfering with the
IFN production, IFN signaling and/or the function of the
IFN-induced expression of antiviral gene products (Cassady
et al., 1998; Poppers et al., 2000; Yokota et al., 2001; Eidson
et al., 2002; Everly et al., 2002; Lin R. et al., 2004; Lin
R. J. et al., 2004; Brukman and Enquist, 2006; Melchjorsen
et al., 2009; Hoffmann et al., 2015). In recent years, studies
indicated that a number of EHV1 proteins modulate the early
immunity to EHV1 (Ambagala et al., 2004; Van de Walle et al.,
2008; Wagner et al., 2011; Wimer et al., 2011). Sarkar et al.
(2015) demonstrated that the neurovirulent T953 strain shuts
down IFNβ production in equine endothelial cells upon the
expression of late viral proteins. Primary respiratory epithelial
cells inoculated with the neurotropic Ab4 strain showed an up-
regulation of mRNA expression of IFNα, which indicates the
activation of the IFN response in the URT (Soboll Hussey et al.,
2014). Intriguingly, recent studies of the URT demonstrated
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that chemokine expression varied between abortigenic and
neurovirulent EHV1 strains in vivo and ex vivo (Holz et al., 2017;
Zhao et al., 2017). A careful analysis of the early IFN response
against EHV1 at the URT, and a comparison between abortigenic
and neurovirulent variants may contribute to our understanding
of the invasion kinetics of the two types of EHV1 in the URT.
Indeed, an appropriate IFN response is essential to overcome
viremia and severe reproductive or neurological clinical signs
caused by respiratory infections (Holz et al., 2017).

Based on the phenotype-differences upon EHV1-replication
and chemokine expression in the epithelium of the URT in
vivo and ex vivo, we hypothesized that abortigenic EHV1 may
trigger reduced amounts of IFN and/or display a decreased
sensitivity to the antiviral effects of IFN on viral plaque formation
at the level of the respiratory epithelium. In this work, we
evaluated, by using an in-house developed in vitro and ex vivo
model of the URT, the ability of abortigenic and neurovirulent
EHV1 to activate the secretion of endogenous type I IFN.
In addition, we analyzed whether both EHV1 phenotypes
could overcome the antiviral state, induced by exogenous
IFNα. Finally, we studied the effects of IFNα inhibition on
replication kinetics of both EHV1 variants. Understanding
the relation of both EHV1 phenotypes with IFN may have
important consequences for the design of strategies to induce
protective immunity and to develop new intranasal vaccination
strategies.

MATERIALS AND METHODS

Virus
Different Belgian EHV1 strains were included in this study and
were genotyped in the ORF30 region by the Animal Health
Trust in the United Kingdom (Nugent et al., 2006). The EHV1
abortigenic strains 94P247 and 97P70 were originally isolated in
1994 and 1997 from the lungs of an aborted fetus (van derMeulen
et al., 2000; Van de Walle et al., 2009). The neurovirulent 95P105
and 03P37 EHV1 strains were first isolated in 1995 and 2003 from
the blood of a paralytic horse (van der Meulen et al., 2003; Garré
et al., 2009). Virus stocks of all strains were used for inoculation
at the 6th passage. The last passage was performed in RK-13
cells.

Donor Horses
Respiratory tissues from horses were collected post mortem
in the slaughterhouse, approved by the Ethical committee of
Ghent University (2018_NOPROC_01). Horses negative for
ocular/nasal discharge and lung pathologies were selected. The
horses were aged between 5 and 15 years old, as determined by
inspection of dental incisive architecture (Muylle et al., 1996).
Each experiment was conducted with tissues from three different
horses. The deep part of the nasal septum and proximal part
of the trachea were collected from each horse. Tissues were
transported to the laboratory on ice, in phosphate-buffered
saline (PBS), supplemented with 1% gentamycin, 1% penicillin-
streptomycin (Gibco, Invitrogen, Paisley, UK), 1% kanamycin
(Sigma-Aldrich, St. Louis, MO) and 0.5% amphotericin B
(Bristol-Myers Squibb).

Isolation and Cultivation of Respiratory
Mucosa Explants
Equine respiratory mucosa explants were obtained as described
previously (Vandekerckhove et al., 2010). Briefly, mucosa was
stripped from the cartilage of the deep part of the nasal septum
and the proximal trachea. Mucosa was divided into equal
explants of 0.5 cm2 and placed upwards on fine-meshed gauzes.
Explants were cultured in serum-free medium at the air-liquid
interface at 37◦C and 5% CO2.

Cells
Isolation and Cultivation of Equine Respiratory

Epithelial Cells
The isolation and culture of equine respiratory epithelial cells
(EREC) were adapted from the protocol described by Quintana
et al. (2011). Briefly, equine tracheal tissues were washed
twice with cold Dulbecco’s phosphate-buffered saline (DPBS)
to remove red blood cells. Epithelial cells were isolated by
an enzymatic digestion, using gentle agitation in calcium and
magnesium-free minimal essential medium (MEM) containing
1.4% pronase (Roche Applied Science, Indianapolis, IN) and
0.1% deoxyribonuclease I (Sigma-Aldrich, St. Louis, MO).
Tissues were incubated during 48 h with the enzyme mix.
Cells were cultured in a plastic uncoated petri dish for 6 h
in DMEM/F12 containing calcium and magnesium-free MEM,
1% penicillin-streptomycin (Gibco, Invitrogen, Paisley, UK)
and 2.4µg/ml insulin (Sigma-Aldrich, St. Louis, MO) to
reduce fibroblast contamination. EREC were stored in liquid
nitrogen at a density of 2 million cells per cryovial until
further use. For culture, we seeded the EREC into type IV
collagen (Sigma-Aldrich, St. Louis, MO) coated transwell cell
culture wells (Costar, Corning, Fisher Scientific, Fair Lawn,
NJ) in DMEM/F12, containing 5% non-heat-inactivated fetal
bovine serum (Gibco, Invitrogen, Paisley, UK), 1% calcium
and magnesium-free MEM, 1% penicillin-streptomycin (Gibco,
Invitrogen, Paisley, UK) and 0.5% amphotericin B (Biowhittaker,
Walkersville,MD). After 24 h of culture, we removed themedium
and cultivated the cells at an air-liquid interface in epithelial
cell medium containing DMEM/F12 supplemented with 2%
Ultroser G (Pall Life Sciences, Pall Corp., Cergy, France), 1%
penicillin-streptomycin (Gibco, Invitrogen, Paisley, UK) and
0.5% amphotericin B (Biowhittaker, Walkersville, MD). EREC
were incubated in a humidified incubator at 37◦C, 5% CO2 until
differentiated.

Rabbit Kidney Epithelial (RK-13) Cells
RK-13 cells were purchased from the American Type Culture
Collection (ATCC, Manassas, Virginia, USA) and were used
in this study to quantify EHV1 replication. RK-13 cells
were maintained in Modified Eagle’s medium (MEM, Gibco,
Invitrogen, Paisley, UK) supplemented with antibiotics and 5%
FCS (Gibco, Invitrogen, Paisley, UK). Extracellular virus titers
were determined at different time points post inoculation.

Analysis of Viability
An in situ Cell Death Detection Kit (Fluorescein) based
on Terminal deoxynucleotidyl transferase mediated dUTP
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Nick End Labeling (TUNEL) was obtained from Roche
(Mannheim, Germany) and used to detect DNA fragmentation
induced by apoptotic signaling cascades. The assay was
performed on mucosa explants pre-treated with recombinant
equine IFNα or an IFN signaling pathway inhibitor.
Cells were analyzed for incorporation of dUTP with a
fluorescence microscope (Leica DM RBE microscope, Leica
Microsystems GmbH, Heidelberg, Germany). The number
of TUNEL-positive cells was evaluated in five randomly
chosen fields of 100 cells in epithelium as well in the lamina
propria.

Pre-treatment With Recombinant Equine
IFNα or an IFN Inhibitor Prior to and During
EHV1 Infection
At 12 h of culture, explants were taken from their gauzes and
placed in a 24-well plate with the epithelial surface upwards.
Warm serum-free medium was used to wash them twice.
Explants were inoculated based on the agarose-model, described
by Vairo et al. (2013). Briefly, a new 24-well plate was embedded
with 1ml of a solution containing 50% of sterile 3% agarose (low
gelling temperature; Sigma-Aldrich, St. Louis, MO) and 50% of
2X medium (50% 2X DMEM and 50% 2X F12 supplemented
with 2µg/mL gentamicin, 0.2 mg/mL streptomycin and 200
U/mL penicillin). Explants were placed on top of the solified
agarose layer with the epithelium upwards. The lateral surfaces
of the mucosa were covered by additional agarose. Subsequently,
explants were inoculated with 1ml inoculum containing 106.5

TCID50 of 97P70, 94P247, 03P37, or 95P105 EHV1 strain. After
incubation, explants were washed twice in warm serum free
medium and transferred to their gauzes. At 10, 24, 48, and 72 hpi
mucosa explants were collected and embedded inmethylcellulose
medium (Methocel R© MC, Sigma-Aldrich, St. Louis, MO) and
frozen at−70◦C. Supernatant was collected and stored at−70◦C
until further use. As positive control, explants were pre-treated
during 18 h with recombinant equine IFN alpha (rEqIFNα)
[(Kingfisher Biotech, Inc. (Saint Paul, MN)] and collected at
48 hpi.

EREC were inoculated in vitro with EHV1 strains 97P70,
94P247, 03P37, and 95P105 at a MOI of 1 in 200 µl epithelial
cell culture medium for 1 h at 37◦C with 5% CO2. Next, cells
were gently washed twice inDMEM/F12, to remove the inoculum
and further incubated in fresh medium. Mock inoculations were
carried out in parallel. At 10, 24, and 48 hpi, supernatants were
collected for quantification of viral replication and IFN secretion.
EREC were then fixed in 100% methanol for 20min at−20◦C.

Where mentioned, 0, 10, 100, 1000 laboratory units per ml
(U/ml) rEqIFNα [Kingfisher Biotech, Inc. (Saint Paul, MN)],
were added 18 h before inoculation and maintained throughout
the inoculation and cultivation of the explants and EREC.
The inhibitor of the IFN response Ruxolitinib (Rux) (Selleck
Chemicals) was prepared as 10mM stocks in dimethyl sulfoxide
(DMSO) and used at a concentration of 0.04, 0.4, and 4µM.
Where indicated, mucosa explants and EREC were incubated
with Rux or an equivalent volume of DMSO during 2 h
(37◦C, 5% CO2) prior to infection and maintained throughout

inoculation and cultivation of the mucosa explants and
EREC.

The concentration of rEqIFNα, Rux, or DMSO used in this
study did not decrease cell viability, as determined by TUNEL
staining. Mucosa explants pre-treated with rEqIFNα, Rux, or
DMSO were collected at 48 hpi.

Indirect Immunofluorescence Staining
EHV1 Proteins
At different time points, consecutive cryosections of 16µm
were made of the frozen explants. The frozen sections were
mounted on 3-aminopropyltriethoxysilane (Sigma-Aldrich, St.
Louis, MO) coated slides. They were fixed in 100% methanol
for 20min at −20◦C, and then washed with DPBS. Late
viral proteins were stained with biotinylated equine polyclonal
anti-EHV1 IgG antibody (1:20 in DPBS) (van der Meulen
et al., 2003), followed by streptavidin FITC (1:200 in DPBS)
(Molecular Probes, Eugene, OR). Subsequently, the BM of the
explants was stained by incubation with a mouse monoclonal
anti-collagen VII IgG1 antibody (clone LH7.2; 1:50 in DPBS)
(Sigma-Aldrich, St. Louis, MO), followed by a Texas Red R©-
conjugated goat anti-mouse IgG antibody (1:200 in DPBS)
(Molecular Probes, Eugene,OR). Antibodies were incubated
for 1 h at 37◦C. Determinations of viral plaque numbers and
plaque latitude were based data obtained from 50 consecutive
cryosections.

Interferon Alpha
At 48 hpi, mucosa explants and EREC were pre-treated with
10µg/ml Brefeldin A (Sigma-Aldrich, St. Louis, MO) for
2 h and 30min, respectively. Fifty consecutive cryosections
of 16µm were made of the frozen explants and fixed in
100% methanol for 20min at −20◦C. Viral proteins were
stained by incubation with biotinylated equine polyclonal
anti-EHV1 IgG antibody (1:20 in DPBS) (van der Meulen
et al., 2003), followed by secondary streptavidin-TR R© (1:200
in DPBS) (Molecular Probes, Eugene, OR). IFNα was detected
by incubation of the cultures with a rabbit polyclonal anti-
equine IFNα1 IgG antibody (1:50 in DPBS) (Kingfisher Biotech,
Inc., Saint Paul, MN), followed by secondary FITC R©-labeled
goat anti-rabbit IgG antibody (1:100 in DPBS) (Molecular
Probes, Eugene, OR). EREC were stained similarly as mucosa
explants.

Confocal Microscopy
Immunofluorescence of cryosections and EREC were analyzed
by confocal microscopy (Leica TCS SP2 Laser Scanning Spectral
Confocal System; Leica Microsystems). A Gre-Ne 543 nm laser
was used to excite Texas Red-fluorochromes. An Argon 488 nm
laser excited FITC-fluorochromes.

Bioassay for Determining IFN Antiviral
Activity
Supernatants of EHV1- and mock-inoculated explants were
harvested at 10, 24, 48, and 72 hpi. Type I IFN bioactivity was
determined by a cytopathic effect (CPE) reduction assay based on
vesicular stomatitis virus (VSV) andMadin-Darby bovine kidney
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(MDBK) cells (La Bonnardiere and Laude, 1981). MDBK cells
were seeded in 96-well micro titer plates in Dulbecco’s modified
Eagle Medium (DMEM) with 5% FCS, 1% sodium pyruvate,
1% penicillin-streptomycin solution and 1% gentamycin. After
overnight incubation at 37◦C, 5% CO2, medium was removed
and serial twofold dilutions of samples were added to the
confluent cells. Following 18 h incubation (37◦C, 5% CO2), 50 µl
of VSV was added to the samples and virus control wells, at a
concentration resulting in complete CPE after 48 h. To the cell
control wells, only 50 µl of medium was added. Following 48 h
incubation, medium was aspirated and 50 µl of 0.1% neutral
red solution was added to the cells during 1 h at 37◦C in 5%
CO2. Next, cells were rinsed, air-dried and 150 µl of dissolving
solution (50 µl sodium lauryl sulfate (SDS), 100 µl 0.2M HCl
in H2O) was added. The absorbance of neutral red solution at
492 nm was determined with a micro-plate reader. The IFN titer
was calculated as the reciprocal of the last IFN dilution causing
50% inhibition of virus-induced CPE and was expressed as IFN
units per volume. Recombinant EqIFNα [Kingfisher Biotech,
Inc., (Saint Paul, MN)] with a titer of 18 x 103 U/ml was run in
each assay.

Quantification of IFNα Levels With ELISA
IFNα quantification was assessed by an ELISA assay using
the commercial Quantikine immunoassay kit (GSI Equine-
IFN alpha, Genorise Scientific, Inc., USA) according to the
manufacturer’s instructions. Briefly, the samples were added for
1 h at room temperature to 96-well microtiter plates, coated
with primary antibody. After washing, the secondary antibody
conjugate with peroxidase was added to each well and incubated.
The concentration of the cytokines was determined by the
intensity of the color measured spectrophotometrically using a
micro-plate reader.

Virus Titration
The extracellular viral titer was determined in supernatant from
mucosa explants and EREC. Virus titers were assessed by a 50%
tissue culture infective dose assay using RK-13 cells. The 50%
end-point was calculated according to the method of Reed and
Muench (Reed and Muench, 1938).

Statistical Analyses
Analyzed data for statistical significance were subjected to
a multiple-way analysis of variance (ANOVA). The Scheffé-
test was used as a post-hoc test. If the assumption of equal
variables was not fulfilled with the Levene’s test, the data
were log-transformed prior to ANOVA. Normality of the
residuals was verified by the use of the Shapiro-Wilk test.
A Kruskall-Wallis’ test, followed by a Mann-Whitney’s post-
hoc test was performed when variables remained unequal or
when normality was not achieved after log-transformation.
Differences in results with p < 0.05 were considered significant.
The data shown represent means ± SD of independent
experiments. Data were statistically evaluated with IBM SPSS
Statistics for Windows, version 23.0 (IBM Corp, Armonck, NY,
USA).

RESULTS

EHV1 Activates IFN Production in Equine
Respiratory Mucosa Explants and EREC
First, EHV1 replication was evaluated in the mucosa explants
and EREC from the URT by analyzing the number of
viral plaques and plaque latitudes after IF staining and by
fluorescence microscopy (see Supplementary Figures 1A,B).
Nasal and tracheal mucosa explants and EREC were (mock)
inoculated with 1ml of EHV1 97P70, 94P247, 03P37, or 95P105
strains containing 106.5 TCID50 virus. At 10, 24, 48, and 72 hpi,
the supernatants of mucosa explants were collected and explants
were fixed. EREC and EREC-supernatants were collected at 10,
24, and 48 hpi. In the explants from the nasal septum, the
number, and latitude of the viral plaques increased in time
for both EHV1 phenotypes. At 72 hpi, we observed a trend
of more and larger viral plaques induced by the abortigenic
variants, compared to the neurovirulent strains, albeit the
differences were not statistically significant. This corresponds
with the observations described by Vandekerckhove et al. (2010)
and Gryspeerdt et al. (2010). In EHV1-inoculated tracheal
mucosa explants, the abortigenic strains showed more plaques
compared to the neurovirulent strains at 72 hpi. However, the
difference in plaque latitude between the two phenotypes was
less pronounced. In EHV1-inoculated EREC, no differences
between the two types of strains could be observed. These
results imply a tissue specific replication potential of EHV1.
Next, viral replication was evaluated by virus titration of the
supernatant (see Supplementary Figure 1C). Both abortigenic
and neurovirulent EHV1 variants produced similar levels of
new virus particles and no significant differences were observed
between both types of variants. However, we detected slightly,
but not significant higher virus titers in supernatant derived
from tracheal mucosa explants, compared to nasal mucosa
explants (p= 0.062). Taken together, mucosa explants and EREC
are suitable models to investigate the role of IFN in respiratory
EHV1 infections.

Therefore, the type I IFN production was concurrently
analyzed in the URT after EHV1 infection. Equine IFNα

concentration and bioactivity were assessed in the supernatants
by ELISA and by a CPE reduction assay based onVSV andMDBK
cells. Mucosa explants pre-treated during 18 h with rEqIFNα

(100 U/ml) were used as positive control and were collected at
48 hpi. Determining the IFNα concentration in the supernatant
of mucosa explants by ELISA, showed that all EHV1 strains
triggered IFNα production starting from 48 hpi, compared to
non-inoculated explants (Figure 1, blue symbols). The IFNα

concentration significantly increased from 48 to 72 hpi for all
EHV1 strains (p < 0.05) in nasal and tracheal mucosa explants
(Figure 1, upper and middle panel). In addition, in EREC,
IFNα was constitutively present at all time points, however no
significant increase in time was observed (Figure 1, lower panel).

To analyze whether the produced IFNα is bioactive, a CPE
reduction assay was performed, as shown in orange in Figure 1.
Bioactive IFNα could be detected in the supernatant of EHV1
inoculated explants, while the IFNα bioactivity did not reach
the limit of detection of 20 U/ml in mock-inoculated explants.
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FIGURE 1 | Type I IFN concentration (blue) and bioactivity (orange) in equine respiratory mucosa explants and equine respiratory epithelial cell (EREC) cultures. Each

symbol indicates one horse. Symbols in blue and orange represent IFNα concentration and bioactivity detected by ELISA and CPE reduction assay, respectively.

Nasal (upper panel), tracheal (middle panel) mucosa explants, and EREC (lower panel) were inoculated with two abortigenic (97P70 and 94P247) and two

neurovirulent (03P37 and 95P105) EHV1 strains. At 10, 24, 48, and 72 hpi, supernatant was collected to assess IFNα concentration and bioactivity. Experiments were

performed with mucosa explants of 3 horses (horse 1 , 2 , and 3 ) and EREC of 3 other horses (horse I , II , and III ).

Positive controls showed high IFNα bioactivity in nasal (556 ±

166 U/ml) and tracheal (399± 380 U/ml) mucosa explants (data
not shown). Surprisingly, only nasal mucosa explants inoculated
with the 97P70 abortigenic strain (33 ± 14 U/ml) and 95P105
neurovirulent strain (20 ± 2 U/ml), showed a low-level increase
of IFNα bioactivity starting from 48 hpi (Figure 1, upper panel).
In tracheal mucosa explants, similar levels (45 ± 44 U/ml) of
IFNα were detected for all strains at 48 hpi. From 48 to 72 hpi
the IFNα expression increased to 100± 109 U/ml for abortigenic
97P70 and 94P247 and 99 ± 120 U/ml for the neurovirulent
03P37 and 95P105 strains. These results of tracheal mucosa
explants correspond with the IFNα concentration determined
by ELISA. In contrast, the IFNα concentrations in nasal
mucosa explants detected by ELISA did not correspond with
the measured IFN bioactivity. This suggests that not all IFNα

secreted by nasal mucosa, is bioactive. Furthermore, bioactive
IFNα secreted by EHV1-inoculated tracheal mucosa explants was
significantly higher, compared to EHV1-inoculated nasal mucosa

explants (p < 0.05). These results imply that the production
of IFNα in the nasal cavity is strictly regulated in order to
orchestrate the beneficial and negative effects of IFNα in the host.
Based on the results obtained by ELISA and by CPE-reduction
assay we conclude that both abortigenic and neurovirulent EHV1
strains trigger IFNα production to the same level.

Finally, the expression of IFNα in mucosa explants was
confirmed by immunofluorescence (IF) staining. As shown in
Figure 2, constitutive expression of IFNα was observed in the
basal part of respiratory epithelium inmock-inoculated nasal and
tracheal mucosa explants at 48 hpi. In tracheal mucosa explants,
secreted IFNα could also be observed at the apical side of the
epithelium. Upon inoculation with abortigenic or neurovirulent
EHV1 strains, the expression of IFNα co-localized with the EHV1
infected epithelial cells and was expressed in the apical and basal
part of the respiratory epithelium, in contrast to control samples.
No significant differences in IFNα expression or co-localization
with infected epithelial cells were observed between the two
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types of EHV1 strains (data not shown). IF staining of EREC
demonstrated a low-level constitutive expression of IFNα in non-
inoculated EREC at 48 hpi. The expression of IFNα increased and
co-localized with EHV1 viral proteins in EREC over time pi.

Taken together, these data demonstrate that the expression
of type I IFN is up regulated equally by both abortigenic and
neurovirulent EHV1 phenotypes in respiratory epithelium. IFNα

concentration in nasal and tracheal mucosa was similar, while the
IFNα bioactivity appears to be hampered in the nasal cavity.

EHV1 Is Susceptible to rEqIFNα in
Respiratory Mucosa Explants and EREC
In the next experiments, we investigated whether both EHV1
variants could overcome the IFN-induced antiviral state, by
treatment of the respiratory mucosa explants and EREC with
exogenous rEqIFNα (0, 10, 100, and 1000 U/ml) 18 h prior
to and during abortigenic and neurovirulent EHV1 infection.
Cell viability determined by TUNEL staining did not show
any significant differences between rEqIFNα treated and non-
treated mucosa explants or EREC (>95% TUNEL negative cells),
suggesting that any inhibition of EHV1 was not the result of
IFN-mediated cytotoxicity (see Supplementary Table 1).

In abortigenic EHV1-inoculated nasal mucosa explants, the
number of plaques decreased from 8 ± 1 of 97P70 plaques and 6
± 4 of 94P247 plaques at 0 U/ml to 4± 3 and 2± 1 at 100 U/ml,
respectively. At 1000 U/ml no 97P70 plaques were observed and
the number of 94P247 plaques was significantly reduced to 0 ±

1 (p < 0.05) (Figure 3A, upper panel). A similar reduction was
observed in tracheal mucosa explants (Figure 3A, lower panel)
and EREC (Figure 3B). Nasal mucosa explants inoculated with
the neurovirulent EHV1 strain 03P37 showed a decrease from 10
± 2 to 1 ± 2 of plaques when rEqIFNα concentration increased
from 0 to 1000 U/ml, respectively. A similar reduction was seen
for the 95P105 strain from 4 ± 1 to 1 ± 1 of plaques with
increasing rEqIFNα concentration (Figure 3A, upper panel).
Analogous results were observed in tracheal mucosa explants
(Figure 3A, lower panel) and EREC (Figure 3B). As shown in
Figure 4A, a decrease in plaque latitude was observed in both
respiratory mucosa explants and EREC with increasing rEqIFNα

concentration. In nasal mucosa explants, plaque latitudes of 152
± 86µm for 97P70 and 170± 47µm for 94P247 were measured
at 0 U/ml rEqIFNα. This latitude decreased to 103 ± 33µm for
97P70 and 91 ± 83µm for 94P247 strains at 10 U/ml. However,
at 100 U/ml an increase in plaque latitude was observed in two
out of three horses for both 97P70 (132 ± 52µm) and 94P247
(89 ± 43µm) abortigenic strains, compared to 10 U/ml. At
1000 U/ml, plaque latitudes of 97P70 and 94P247 significantly
dropped to 0 ± 0µm and to 14 ± 24µm, respectively (p <

0.05) (Figure 4A, upper panel). Similar results were observed
for tracheal mucosa explants and EREC inoculated with the
abortigenic strains. Here, again, an increase in abortigenic EHV1
plaque latitude at 100 U/ml compared to 10 U/ml was seen for
two out of three horses (Figure 4A, middle and lower panel).
Similarly, plaque latitudes decreased for both neurovirulent
strains from 119 ± 51µm to 0 ± 0µm for the 03P37 strain and
147 ± 69µm to 27 ± 47µm for 95P105 strain with increasing

rEqIFNα concentration. In contrast to the abortigenic strains,
the neurovirulent strains did not show a similar trend in plaque
latitudes at a concentration of 100 U/ml when compared to 10
U/ml. Figure 4B shows representative confocal images of nasal
mucosa explants, treated with 0, 10, 100, and 1000 U/ml of
rEqIFNα prior to abortigenic and neurovirulent EHV1 infection.
Next, we quantified EHV1 replication in the presence or absence
of rEqIFNα, by determining extracellular virus titers by titration
of the supernatants of inoculated respiratory mucosa explants
and EREC at 48 hpi on RK-13 cells. We first demonstrated that
rEqIFNα that may be present in the supernatants did not have
a direct effect on EHV1 replication in RK-13 cells that were
used for virus titrations (see Supplementary Figure 2). IFN-
pretreated and EHV1-inoculated respiratory mucosa explants
showed a concentration-dependent decrease in extracellular
virus titers for both abortigenic and neurovirulent EHV1
variants. In addition, at 100 U/ml, for two out of three horses,
the abortigenic 97P70 EHV1 strain showed a 2-log increase of
virus titer, compared to 10 U/ml. And one out of three horses
showed a 1-log virus titer increase for the 94P247 EHV1 strain at
this concentration of IFN in tracheal mucosa explants. In general,
this was not observed in either of the two EHV1 neurovirulent
strains (Figure 5). Although this increase was not statistical
significant due to the large biological variation between the
individual horses, it does seem to correspond with the increased
plaque latitudes observed at 100 U/ml. At a high concentration of
1000 U/ml rEqIFNα, a significant lower virus titer was observed
in nasal and tracheal mucosa explants compared to lower
concentrations (p < 0.05) for all EHV1 strains (Figure 5, upper
and middle panel). Similar results were observed in EREC when
pretreated with 0, 10, 100, and 1000 U/ml rEqIFNα. However,
no increase in virus titer was observed at 100 U/ml (Figure 5,
lower panel).

Taken together, we conclude that both EHV1 phenotypes
are susceptible to the IFN-induced antiviral state in respiratory
mucosa explants and EREC, in a largely dose-dependent
manner. However, the abortigenic EHV1 strains show a window
of IFN concentration (10–100 U/ml) where increasing IFN
concentration does not always correlate with decreased viral
replication and spread.

Inhibition of the IFN Response Enhances
EHV1 Replication ex vivo
To confirm that the replication of the neurovirulent EHV1
variants in the URT is affected more substantially by IFNα

compared to the abortigenic EHV1 variants, we performed assays
using the inhibitor Rux that targets JAK1, a major component of
the IFN signaling pathway. Figure 6A shows the area of action of
Rux in the JAK/STAT pathway. Since the primary site of EHV1-
replication is the nasal mucosa, all further experiments were
conducted in mucosa explants isolated from the deep part of the
nasal septum.

Based on Stewart et al. (2014), we pretreated mucosa
explants with increasing concentrations of Rux (0.04, 0.4 and
4µM) or DMSO (control) for 2 h prior to viral inoculation.
Explants remained in the presence of Rux or DMSO throughout
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FIGURE 2 | Double immunofluorescence staining of EHV1 viral proteins and IFNα in equine respiratory mucosa explants and equine respiratory epithelial cell (EREC)

cultures. At 48 hpi, mucosa explants and EREC were pretreated with Brefeldin A for 2 h and 30min, respectively. EHV1-induced plaques (red) and IFNα (green) in

nasal and, tracheal mucosa explants and EREC were visualized by immunofluorescence staining. IFNα expression is highly co-localized with viral plaques.

Non-inoculated explants and EREC show a base-line expression of IFNα. Nuclei were counterstained with Hoechst (blue). Bars, 75µm.
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FIGURE 3 | Pretreatment with rEqIFNα reduces the number of EHV1 viral plaques in equine respiratory mucosa explants and equine respiratory epithelial cell (EREC)

cultures. Each symbol represents one horse. (A) Mucosal explants (nasal and tracheal) and (B) EREC were treated with 0, 10, 100, and 1000 U/ml rEqIFNα 18 h prior

to and during EHV1-inoculation with two abortigenic (97P70 and 94P247) and two neurovirulent (03P37 and 95P105) variants. Explants and supernatants were

collected at 48 hpi. Different letters represent significant differences (p < 0.05) in the number of viral plaques. Experiments were performed on mucosa explants of 3

horses (horse 1 , 2 , and 3 ) and EREC of 3 other horses (horse I , II , and III ).

the cultivation. Explants were collected and fixed at 48
hpi. Rux (or DMSO alone) did not affect cell viability in
nasal mucosa explants (see Supplementary Table 2). Also, to
determine whether Rux potentially could directly enhance EHV1
replication, independently from the IFN signaling pathway,
a virus titration assay was performed on RK-13 cells in the
presence or absence of the inhibitor. We found that Rux

did not directly enhance EHV1 replication in RK-13 cells
(see Supplementary Figure 3). Rux directly inhibits the IFN
signaling pathway as confirmed by testing the IFN bioactivity of
supernatant of mucosa explants on VSV inoculated MDBK cells
pretreated or not with this inhibitor (Figure 6B).

Pretreatment of nasal mucosa explants with different
concentrations of Rux did not affect the number of plaques
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FIGURE 4 | Pretreatment with rEqIFNα reduces EHV1 plaque latitudes in equine respiratory mucosa explants and equine respiratory epithelial cell (EREC) cultures. (A)

Graphs represent plaque latitudes in rEqIFNα-pretreated nasal (upper panel), tracheal (middle panel) mucosa explants and EREC (lower panel) at 48 hpi. Different

letters represent significant differences (p < 0.05) in viral plaque latitudes. (B) Immunofluorescence in plaques induced by abortigenic and neurovirulent strains (green)

and staining of the basement membrane (red) in nasal mucosa explants are shown. Nuclei were counterstained with Hoechst (blue). Bars, 75µm. Experiments were

performed in triplicate.
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FIGURE 5 | Replication of EHV1 in equine respiratory mucosa explants and equine respiratory epithelial cell (EREC) cultures following treatment with rEqIFNα. The

efficacy of rEqIFNα treatment was measured by the extracellular virus titer of IFN-treated explants and cells. Each symbol represents one horse. Experiments were

performed on 3 individual horses. Different horses were used to isolate mucosa explants (horse 1 , 2 , and 3 ) and EREC (horse I , II , and III ). Different small

letters represent significant differences (p < 0.05) in virus titers.

of 94P247, 03P37, and 95P105 EHV1 strains, compared to
non-treated cells, while the 97P70-abortigenic strain showed a
significant increase in number of plaques (p < 0.05)(Figure 6C,
upper panel).

To quantify EHV1 replication in the Rux-treated explants,
extracellular virus titers were determined at 48 hpi and
were compared to virus titers in control-treated explants. No
significant increase was observed in virus titers in Rux-treated
explants (Figure 6C, lower panel).

In addition, the effect of Rux treatment on viral plaque
latitudes was analyzed and is shown in Figure 7A. Both
abortigenic EHV1 strains did not show a Rux-mediated increase
in plaque latitude, compared to non-treated explants. Indeed,
plaque latitudes of 97P70 and 94P247 did not show statistically

significant differences at the concentration of 0.04µM (167± 51
and 154 ± 35µm) compared to non-treated explants (184 ± 23
and 162 ± 51µm). Also, no concentration-dependent raise of
plaque latitudes was present when Rux concentration increased
to 0.4µM (206 ± 97 and 181 ± 13µm) and 4µM (180 ± 36
and 191 ± 69µm). However, Rux-treated explants inoculated
with the neurovirulent EHV1 strains showed a dose-dependent
increase in plaque latitudes, compared to non-treated explants.
This indicates an enhanced lateral spread of the neurovirulent
strains when the IFN signaling pathway is suppressed. Indeed,
although the 03P37 and 95P105-inoculated mucosa explants
showed no significant differences between 0.04µM Rux-treated
tissues (138 ± 46 and 118 ± 42µm) and non-treated tissues
(123 ± 36 and 143 ± 84µm), plaque latitudes of 03P37 and
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FIGURE 6 | Effects of Rux on the replication of abortigenic and neurovirulent EHV1 strains in nasal mucosa explants. (A) Rux inhibits the JAK/STAT signaling pathway

by hindering the phosphorylation of STAT-1 and-2. (B,C) Mucosa explants from the nasal septum are used to demonstrate the effects of the IFN-signaling inhibitor

Rux. Explants were pretreated with 0.04, 0.4, or 4µM of Rux or equivalent DMSO concentrations for 2 h prior to EHV1 inoculation. At 48 hpi, explants were collected

and fixed for immunofluorescence straining to detect viral proteins. (B) The efficacy of Rux-treatment was calculated from the IFN bioactivity in treated versus

non-treated explants. (C) Number of viral plaques in the presence or absence of Rux were counted and demonstrated in the upper panel. The extracellular virus titer

was determined in the supernatant and shown in the lower panel. Each symbol represents one horse (horse 1 , 2 , and 3 ). Different small letters represent

significant differences (p < 0.05) in virus titers.
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FIGURE 7 | Effects of Rux on the lateral spread of abortigenic and neurovirulent EHV1 strains in nasal mucosa explants. (A) Mucosa explants from the nasal septum

were treated with Rux for 2 h at 37◦C, followed by EHV1 inoculation in the presence of Rux or DMSO (control). At 48 hpi, explants were collected and the latitudes of

the viral plaques were measured. Each symbol represents one horse. Different small letters represent significant differences (p < 0.05) in virus titers. (B)

Immunofluorescent pictures of Rux-treated or non-treated mucosal explants inoculated with the 97P70 abortigenic and 03P37 neurovirulent EHV1 strains. Plaque

latitudes of the presented strains are representative for the plaque latitude of the abortigenic and neurovirulent phenotype. Bars, 75µm.

95P105 increased when Rux concentration increased from 0.04
to 0.4µM (169 ± 26 and 214 ± 42µm). Another 1-log raise
of Rux concentration (4µM) resulted in a three-fold increase
(325 ± 75µm) and two-fold increase (221 ± 72µm) of plaque
latitude for the 03P37 and 95P105 strain respectively, compared
to control (p < 0.05). Corresponding representative confocal
images are shown in Figure 7B.

In summary, these results show that viral plaques expand
when the IFN signaling pathway is inhibited in mucosal explants
inoculated with the EHV1 neurovirulent strains but not with
the EHV1 abortigenic variants. The number of neurovirulent
viral plaques caused by the neurovirulent strains remained
unaltered in the presence of the inhibitor, while the number
of plaques increased in one of the two EHV1 abortigenic
strains.

DISCUSSION

The pathogenesis of respiratory alphaherpesviruses begins with
replication of the virus in the epithelium of the URT, which can
result in respiratory disorders. During the early stage of infection,
the outcome of herpesvirus infections is dependent on the
balance between virus spread and the initiation of innate immune
responses, such as the IFN response (Melchjorsen et al., 2009).
Several studies already demonstrated that alphaherpesviruses
have developed specific mechanisms to overcome the IFN
response (Härle et al., 2002; Melchjorsen et al., 2009; Johnson
and Knipe, 2010). Herpes simplex virus 1 (HSV1), an important
alphaherpesvirus in humans, has evolved many mechanisms
to interfere with the IFN antiviral response. A few examples
are the interference of ICP34.5 with the phosphorylation of
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eIF2α, and of US11 with OAS. EHV1 is a close relative of
human varicella-zoster virus and HSV and is associated with
symptoms varying from respiratory problems to neonatal foal
disease, abortion and paralysis in Equidae (Frampton et al., 2007).
Remarkably, a recent increase in the incidence of equid herpes
myeloencephalopathy (EHM) outbreaks has suggested a change
in the virulence of the virus (Pusterla et al., 2008; Lunn et al.,
2009; Wagner et al., 2011). The prevalence of EHV1-induced
reproductive or neurological outbreaks is associated with a single
nucleotide polymorphism in the catalytic subunit of the viral
DNA polymerase (Nugent et al., 2006; Goodman et al., 2007).
Interestingly, plaque sizes of abortigenic strains are significantly
larger at 48 and 72 hpi compared to plaque sizes of neurovirulent
strains, the same time points at which type I IFN secretion
can be detected (Gryspeerdt et al., 2010; Vandekerckhove et al.,
2010). The variations in primary replication observed between
abortigenic and neurovirulent EHV1 variants may be explained
by the differences in induction or susceptibility toward the
antiviral effects of IFN.

First, we hypothesized that abortigenic EHV1 strains might
be more efficient in down-regulating the synthesis of type I IFN
in the epithelium of the URT, in contrast to the neurovirulent
strains. In the current study, two abortigenic (97P70 and 94P247)
and two neurovirulent (03P37 and 95P105) EHV1 strains were
used. When evaluating the viral replication of the different
EHV1 strains in mucosal explants and EREC, we observed viral
plaques in the epithelium starting from 24 hpi, which increased
in number and latitude over time. The observations in the
nasal mucosa explants were consistent with previous in vivo
and ex vivo studies (Gryspeerdt et al., 2010; Vandekerckhove
et al., 2010). The lateral spread and number of plaques in the
epithelium was more pronounced when using the abortigenic
variants, while neurovirulent strains induced less and smaller
plaques, especially at 48 and 72 hpi. Interestingly, at both time
points, we could detect an increased expression of IFNα for all
EHV1 variants. An important finding is that abortigenic and
neurovirulent EHV1 replication stimulated the secretion of IFN
by the mucosal cells, suggesting no obvious interference of either
viral variant with the induction of IFN in the URT. Moreover,
the 97P70 and 94P247 abortigenic strains could induce the largest
viral plaques in the presence of high IFNα concentrations. Both
neurovirulent strains reached a replication plateau when IFNα

was up-regulated. Similarly, in tracheal mucosa explants, we
observed viral plaques starting from 24 hpi. Surprisingly, we
observed more and larger viral plaques in the tracheal tissues,
compared to the nasal mucosa, despite the presence of more
IFNα. The higher number of larger viral plaques in tracheal
mucosa explants can possibly be explained by the morphology
of the tracheal mucosa. Integrity of the epithelial intercellular
junctions (ICJ) progressively decreases from proximal to distal
airways, which may benefit the virus to reach its receptor
(Lopez-Souza et al., 2009). Indeed, Van Cleemput et al. (2017)
recently showed that EHV1 more efficiently binds to tracheal
mucosal explants, when compared to nasal septum mucosal
explants due to receptor availability. Moreover, only upon a
simultaneous destruction of the nasal septum’s epithelial integrity
and its mucoprotein network, EHV1 could bind efficiently to the

explants. In addition, the actin-depolymerizing drug cytochalasin
D enhances HSV1 release and spread upon disruption of cell
polarity (Schelhaas, 2003). It can be postulated that, due to
the different polarity of tracheal and nasal epithelial cells, the
lateral spread of EHV1 differs in both tissues, which might
explain the reduced strain variant-related differences in the
tracheal mucosa. These results indicate that EHV1 replication
is strain and tissue specific. In EREC, derived from tracheal
mucosa, we could detect IFNα by IF staining, while ELISA or
a CPE-reduction assay could not detect IFNα. As described for
the mucosal explants, we observed high EHV1 replication in
EREC, which might be due to the low IFNα concentration.
In comparison with the tracheal mucosa explants, phenotype
differences were less pronounced. Overall, the nasal mucosa
is the primary site of EHV1 replication, and thus the most
important tissue to analyze. This does not necessarily imply an
enhanced EHV1-replication in the nasal tissues, but possibly
indicates a better adaptation of the virus to specialized anti-
viral proteins, such as type I IFN. In the present study, we
demonstrated that both EHV1 phenotypes equally induce IFNα

in the URT starting from 48 to 72 hpi. This is earlier in
infection then observed in previous in vivo studies, where the IFN
concentration in nasal secretions peaked at day 4 and day 7 pi
(Bridges and Edington, 1986; Edington et al., 1989; Gryspeerdt
et al., 2010). This can be clarified by the ex vivo explant model
used in this study, in which the infection dose is much higher
compared to the in vivo situation. We could observe differences
in IFN concentration and bioactivity between mucosae isolated
from nasal septum and proximal trachea. In nasal mucosa
explants, we observed high concentrations of IFNα by ELISA,
while almost no bioactivity could be detected by the CPE
reduction assay. IFN not only has beneficial protective effects
on the host, but high concentrations or long-term exposure
can induce side effects, such as nausea, fever, leukopenia and
autoimmune disease (Gutterman, 1994). Therefore, to temper
and regulate the immune response not all secreted IFNα may
be bioactive in the nasal cavity. This observation has already
been verified in many body fluids, such as serum, urine, saliva
and peritoneal fluids, in which soluble type I IFN receptors
modulate cytokine activity (Hardy et al., 2001). Indeed, a
soluble IFNAR can act as an antagonist of the IFN signaling
in normal cells (Hardy et al., 2001; de Weerd et al., 2007).
However, when incubating rEqIFNα with supernatant of nasal
and tracheal mucosa explants, no indications were found for the
presence of a soluble IFNAR (data not shown). The underlying
mechanism for the low IFNα bioactivity in the nasal mucosa
explants therefore remains unclear. Our results suggest that the
induction of type I IFN is cell-type and virus strain specific.
Indeed, in equine endothelial cells, derived from the pulmonary
artery, the neurovirulent T953 EHV1 strain could induce type
I IFN at early stages of infection (Sarkar et al., 2015). Later
in infection, this neurovirulent EHV1 strain could interfere
with IFN transcription and translation. Other researchers have
shown that both neurovirulent and abortigenic EHV1-inoculated
PBMC could produce equal amounts of IFN (Wagner et al.,
2011). A study of Holz et al. (2017) reported differing IFNα

levels in nasal secretions and cerebrospinal fluid of horses
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infected experimentally with the neurovirulent and abortigenic
phenotype.

Since the epithelial cells inoculated with abortigenic and
neurovirulent EHV1 showed no differences in the bioactive IFNα

concentration, we hypothesized that there could be differences
in sensitivity between both EHV1 variants upon the antiviral
effects of IFNα. To assess the sensitivity of both EHV1 variants to
the IFN-induced antiviral state, exogenous rEqIFNα (0, 10, 100,
and 1000 U/ml) was added to our ex vivo and in vitro model,
18 h prior to and during EHV1 inoculation. Here, we show
that the replication of both abortigenic and neurovirulent EHV1
could be suppressed by the IFN-induced antiviral responses
in the mucosa explants and EREC. Both immediate early and
late viral proteins were similarly suppressed in the presence
of rEqIFNα (data not shown). As the expression of late viral
proteins is indicative of a full viral replication, only these
proteins were further used in this study. Strong interferon
responses in the URT might aid rapid clearance of the virus,
which might explain the mild/subclinical respiratory disease in
vivo (van Maanen, 2002; Gryspeerdt et al., 2010). Both strain
variants showed a reduction in the number of plaques in a
rEqIFNα concentration-dependent manner, indicating that IFNα

interferes with EHV1 replication in the epithelial cells of the
URT. Which steps in viral replication are blocked is not known.
Sainz and Halford (2002) observed a similar inhibition of viral
replication in Vero cells pretreated with type I IFN during an
infection with HSV1. Viral replication was reduced by 20-fold
to more than 1,000-fold when cells were pretreated with 100
U/ml of IFNα and IFNβ, respectively. The activation of the IFN-
signaling pathway leads to the expression of hundreds of ISG
(interferon-stimulated genes), which collectively target several
steps of the virus life cycle (Schoggins and Rice, 2011). Several
alphaherpesviruses have evolved strategies to evade the IFN
response, in order to create time to spread between adjacent
cells such as epithelial cells, neurons and fibroblasts across
cell junctions (Dingwell and Johnson, 1998; Hukkanen et al.,
1999; Johnson et al., 2001). Notably, we found indications for
a concentration-dependent difference in plaque latitudes and
virus titers between abortigenic and neurovirulent strains. When
respiratory epithelium was pretreated with 100 U/ml prior
to the abortigenic EHV1 infection, we observed an increased
plaque latitude and virus titer, compared to the 10 U/ml.
Due to the large biological variation between horses in this
study, the increase in plaque latitudes and virus titer was not
statistically significant at the concentration of 100 U/ml. Because
the enhanced lateral spread of EHV1 was not observed with
the neurovirulent variants during treatment with IFNα, this
may indicate a variant-specific mechanism to interfere with the
antiviral activity of IFN. This would imply that specific ISG-
proteins do not suppress, but rather promote the lateral spread
of the abortigenic variants at the physiological concentration
between 10 and 100 U/ml of rEqIFNα. It is interesting that
the indications for a potential pro-viral effect of IFN for the
abortigenic strains were observed at a concentration of 100
U/ml, as this concentration corresponds with the IFN bioactivity
detected in our ex vivo model and in the in vivo experiments
of Bridges and Edington (1986) and Gryspeerdt et al. (2010).

The exact mechanisms of action of the majority of the ISG-
encoded proteins are poorly understood, making it difficult
to explain a putative pro-viral effect. However, some ISG-
effector proteins have been shown before to promote herpesvirus
replication, independently of their anti-viral functions. Indeed,
Speer et al. (2016) observed a pro-viral effect of ISG15 in human
cytomegalovirus (HCMV) and HSV1 infections, by destabilizing
the IFNAR-complex the IFN signaling pathway is inhibited.
Furthermore, glycoprotein B of HCMV is able to induce viperin,
an ISG-protein, which binds to a mitochondrial thiolase to
reduce the intracellular ATP concentration. This results in actin
disruption and reduced ICJ integrity, which HCMV exploits
for cell-to-cell spread (Seo et al., 2011; Schneider et al., 2014).
Depending on the prevailing anti-viral or pro-viral effects, viral
replication and spread is either suppressed or enhanced. This
may help to explain the differences between abortigenic and
neurovirulent strains observed in nasal mucosa explants. One
speculative explanation could be that the abortigenic strains
decrease the ICJ integrity in an IFN-concentration-dependent
manner (100 U/ml) in the nasal mucosa via ISG-encoded
proteins, while neurovirulent strains may be less efficient in this
mechanism. Since the ICJ integrity of tracheal mucosa explants
is physiologically reduced compared to that of the nasal mucosa,
such an explanation may also fit in our observation of a more
efficient lateral spread of both abortigenic and neurovirulent
variants in trachea mucosa explants. When tissues are treated
with high concentrations of IFN (1000 U/ml), the anti-viral
effects rule over any pro-viral effects that IFN may have and
inhibit the direct transfer of EHV1 from cell-to-cell. Current
research is aimed at further examining the role of ISG in the
lateral spread of EHV1.

The indications for differences in IFN-sensitivity between
abortigenic and neurovirulent strains were confirmed by the use
of an interferon signaling inhibitor, Ruxolitinib (Rux). Rux is
a specific inhibitor of the JAK/STAT pathway, inhibiting Janus
kinase 1 (JAK1) (Ganetsky, 2013; Assi et al., 2018), thereby
impairing the phosphorylation of STAT and further downstream
signaling (Stewart et al., 2014; Gage et al., 2016). Increasing the
concentration of Rux led to the down-regulation of the IFN-
induced antiviral effects without causing cellular cytotoxicity.
The most obvious effect of Rux that was noted during the
current study was an increase in the typically smaller plaque
size of the neurovirulent strains in nasal mucosa explants as
demonstrated ex vivo and in vivo by Vandekerckhove et al.
(2010) and Gryspeerdt et al. (2010), respectively. Plaque sizes
of the abortigenic strains, which are typically larger than those
of neurovirulent strains, were not increased in the presence
of Rux. This is in line with the effects of rEqIFNα on plaque
size of abortigenic and neurovirulent strains. Indeed, together,
these data strongly suggest that plaque formation by the
abortigenic strains in nasal mucosa explants is less sensitive to
the antiviral effects of IFN compared to neurovirulent strains,
suggesting that abortigenic strains have developed additional
mechanisms to inhibit/exploit the IFN signaling pathway. In
future research it will be of interest to elucidate the molecular
mechanisms underlying the different IFN evasionmechanisms of
the abortigenic and the neurovirulent EHV1 variants.
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Previous research demonstrated many differences between
the abortigenic and neurovirulent strain variants, both at the
primary site of replication and during cell-associated viremia.
It will be interesting to determine the complete sequence of
the strains to help identify possible causes of the observed
phenotypic differences. During EHV1 infection of the URT,
immune cells migrate into the airways to shut down viral
replication. During a neurovirulent EHV1-infection of the URT,
large amounts of immune cells mobilize into the respiratory
mucosa and become infected with EHV1. These cells then may
carry the virus to lymphoid tissues and the blood circulation,
to reach the central nervous system. This is an explosive and
precarious mechanism particularly displayed by neurovirulent
variants, and in most of the infections, results in the elimination
of the virus because of the massive mobilization of immune
cells. However, the abortigenic strains recruit fewer leukocytes
into the URT, which enables the virus to replicate in the
respiratory epithelium to promote viral shedding. Occupant
immune cells become infected with abortigenic EHV1 in a
less explosive and more controlled manner, followed by a
silent transport in these “Trojan horses” to the pregnant uterus
(Vandekerckhove et al., 2010; Laval et al., 2015; Zhao et al.,
2017). In general, our findings support the speculation that
the abortigenic variants may have a selective advantage over
the neurovirulent variants for long-term maintenance within
the equine population, by mastering the antiviral effect of
IFN at the URT (Nugent et al., 2006; Goodman et al., 2007;
Vandekerckhove et al., 2010; Laval et al., 2015; Zhao et al.,
2017).

In summary, the present study is the first to provide a better
understanding of the innate IFN response upon abortigenic
and neurovirulent EHV1 infection at the respiratory mucosa
surface. Using the ex vivo mucosa explant model, we were
able to detect strong IFNα responses upon abortigenic and
neurovirulent EHV1 infection. The enhanced replication of
abortigenic EHV1, compared to replication of neurovirulent
EHV1, at the physiological IFNα concentration, suggests that
EHV1 abortigenic strains interfere more efficiently with innate
immune responses of the host in the respiratory mucosae.
In conclusion, an effective IFN response protects the horse
to a moderate (abortigenic strains) or high (neurovirulent

strains) extent against an EHV1 infection of the respiratory
tract.
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