48 research outputs found
DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes
The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described
Multi-feed cone Cassegrain antenna Patent
Design and operation of multi-feed cone Cassegrain antenn
Deformable subreflector computed by geometric optics
Using a Cassegrainian geometry, the 64-meter antenna with its distorted paraboloidal reflecting surface is forced to produce a uniform phase wavefront by a pathlength-compensating subreflector. First, the computed distortion vectors at the joints or nodes of the main reflector structure supporting the surface panels are best fitted to a paraboloid. Second, the resulting residual distortion errors are used to determine a compensating subreflector surface by ray tracing using geometric optics principles. Third, the totally corrected subreflector surface is defined by the normal directions and distances to the surface of the original symmetric hyperboloid for the purpose of evaluation. Finally, contour maps of distortions of the paraboloid reflector and the compensating subreflector are presented. A field-measured check of the subreflector in focused position as computed by the described methodology is also presented for the antenna position at horizon look with the geometry at 45 degrees elevation
Compensating subreflector for two-reflector antennas: A concept
Segmented subreflector surface of Cassegrainian antenna is distorted and shaped by mechanical means to compensate for loss of figure in main reflector. Number of segments necessary is determined by gravity distortion pattern of main reflector at zenith and at horizon
Limited biomass recovery from gold mining in Amazonian forests
1. Gold mining has rapidly increased across the Amazon Basin in recent years, especially in the Guiana shield, where it is responsible for >90% of total deforestation. However, the ability of forests to recover from gold mining activities remains largely unquantified.
2. Forest inventory plots were installed on recently abandoned mines in two major mining regions in Guyana, and re‐censused 18 months later, to provide the first ground‐based quantification of gold mining impacts on Amazon forest biomass recovery.
3. We found that woody biomass recovery rates on abandoned mining pits and tailing ponds are among the lowest ever recorded for tropical forests, with close to no woody biomass recovery after 3–4 years.
4. On the overburden sites (i.e. areas not mined but where excavated soil is deposited), however, above‐ground biomass recovery rates (0.4–5.4 Mg ha−1 year−1) were within the range of those recorded in other secondary forests across the Neotropics following abandonment of pastures and agricultural lands.
5. Our results suggest that forest recovery is more strongly limited by severe mining‐induced depletion of soil nutrients, especially nitrogen, than by mercury contamination, due to slowing of growth in nutrient‐stripped soils.
6. We estimate that the slow recovery rates in mining pits and ponds currently reduce carbon sequestration across Amazonian secondary forests by ~21,000 t C/year, compared to the carbon that would have accumulated following more traditional land uses such as agriculture or pasture.
7. Synthesis and applications. To achieve large‐scale restoration targets, Guyana and other Amazonian countries will be challenged to remediate previously mined lands. The recovery process is highly dependent on nitrogen availability rather than mercury contamination, affecting woody biomass regrowth. The significant recovery in overburden zones indicates that one potential active remediation strategy to promote biomass recovery may be to backfill mining pits and ponds with excavated soil