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Deformable Subreflector Computed by 
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W. F. Williams 
Radio Frequency and Microwave Subsystems Section 

Using a Cassegrainian geometry. the 64-meter antenna with its distorted pamboloidal 
reflecting surface can be forced to produce a uniform phase wavefront by a pathlength- 
compensating subreflector. First, the computed distortion vectors at the joints or nodes 
of the main reflector stmcture supporting the surface panels are best fitted to a parabo- 
loid. Second, the resulting residual distortion errors are used to determine a cc’ 9, ensating 
subreflector surface oy my tracing using geometric optics principles. Thi )tally 
corrected subreflector surface is defined by the normal directions a m  d to the 
surface of the original symme:ric hyperboloid for the purpose GJ’ evalua:.wL Finally, 
contour maps of distortions of the paraboloid reflector and the compensarulg subreflec- 
tor are presented. A field-measund check of the subreflector in focusedpdtion as com- 
puted by the described methodology is also presented for the antenna position at horizon 
look with the geomew at 45 degrees elevation. 

July-September 1983 

1. Introduction 
In the Cassegrainian radiofrequzncy (RF) antenna, the 

spherical wavefront emanating from the R F  feed reverses 
direction at the hyperboloid focus, then it is reflected by the 
paraboloid reflector into a flat, uniformphase wavefront to 
space. Since the diameter of the paraboloid IS generally about 
ten times larger than the hyperboloid (and therefore more 
massive), its surface errors can introduce much larger distor- 
tions to  the reflecting RF rays and hence introduce larger 
pathlength differences to the desired planar wavefront. The 
subrefleL.,r surface errors are usually minor or negligible in 
comparison. 

Using a geometnc-optics based ray-tracing technique in a 
subreflector-forming (SUBFORMING) computer program, the 
RF pathlength error introduced by the paraboloid’s distortion 
may theoretically be compensated for at the subreflector’s 
surface for each defined ray. 

The @-meter antenna reflector structure (at DSS 14), 
with structural brace modification included, has been modeled 
using NASTRAN computer ar, dysis to compute distortions 
caused by environmental loads, e.g., gravity loading due to 
elevation angle motion. The distortions of the structural 
joints of the fortyeight main radial ribs (Ref. 1) were com- 
puted for the gravity loading at the antenna’s horizon position 
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(elevation angle = 0) with the surface panels previously set to 
the design paraboloid at a 45-deg elevation angle. A paraboloid 
was best fitted to  these distGrtions using the RMS program 
(Ref. 2) and the resulting antenna variables ;vere used in 
the SUBFORMING program and evaluated by the NORM 
program. 

One assumptioir was uade at this time: the normal to the 
compensating subreflemr lies in the +plane, although SUR 
FORMING may not generate this answer for distorted parabo- 
loids. This reduces the solution of the normal corrections 
with respect to  tlic. design hyperboloid parameters to a two- 
dimensional problem. The normal corrections computed for 
each $ value could then be used to  plot the surface contours 
with minor errors. 

II. Analysis Steps 
The input data required by the geometric optics-based pro- 

gram SUBFORMING (see Appendix A) are delineated in 
Fig. 1. The main retlector structure’s computed distortions 
in Cartesian coordinates AX, A Y, and Ai? are added vectori- 
ally to the undeformed coordinates of the refiector structurz 
to define the distorted shape. A new best-fit paraboloid is 
then determined for this distorted shape using the RMS 
program (Ref. 2). which defined a new coordinate system for 
the new paraboloid (which has been rotated and translated 
relative to  the original). The rotation-translation of the best- 
fit paraboioid is indicated in Fig. 1 by ZETA (rotation) and 
HZ, HY (translations). 

The RF feed phase center is defined in Fig. 1 by PDSC. Thc 
RF feed phase center and the focus of the best-fit paraboloid 
have deflected from gravity loading, a s s h g  that the hyper- 
boloid system is focused axially and laterally. The hyperbo- 
loid focal length FCO has changed to  FC due to the deflec- 
tions of the RF feed and the change in focal length of the 
paraboloid. 

The original nodes of the paraboloid (before the distortions 
AX, A Y, and Az) were located on radial lines equally spaced 
at 7.5 deg ($) around the central axis and in appromately 
equal intervals (9 points) along the radials. However, with 
distortions and surface-slope changes resulting from gravity 
loading, a ray parallel to  the axis of the best-fit paraboloid 
will not necessarily stay in the plane dcfined by the ray and 
ilie hyperboioid’s axls as the ray r’ flects from the distorted 
surface of the paraboloid. When this reflected ray impinges on 
a symmetric hyperboloidal subreflector and is again reflected, 
it will miss the RF feed phase center. “hzreiore, a compensrt- 
ing reflectkg jurface on the subreflector will be required to 
maintain focus. 

Referring to  Fig. 3, the equation of the normal correction, 
PS, can be developed from the data described in Fig. 2 (see 
Appendix B). The normal’s intercept point, S, on the hyperbo- 
loid is computed and the normal length PS (required correc- 
tion) is then computed. 

The above described steps were incorporated in the corn- 
pilter program NORM with an added provision to  translate 
points P parallel to the symmetric axis OQ of Fig. 3 to  simu- 
late the focusing motion along the symmetric axis  of the 
hyperboloid. 

The computed normal corrections may be contour plotted 
using JPL’s plotting subroutines where the intersection points 
of the normals m d  the hyperboloid are not required to  be 
uniformly spaced. 

111. Solution Verification 
One check of the methodology was made by considering 

the @-meter antenna reflector data with no distortions as 
inputs to  the SUBFORMING program using the design values 
(Fig. 3) for the 45-deg elevatiop as follows: 

Paraboloid focal length: 26.0933 rn (1027.294 in.) 

Hyperboloid parameters: a = 4.5219 m (1 78.029 in.) 
b = 5.1560 m (202.992 in.) 
c = 6.8580 rn (270.000 in.) 

The answers from the SUBFORMING program were input 
ta !he SORM program; the largest narmal corrections were 
fCUi iu  to be 0.0015 mm (0.00006 in.). In other words, the 
SUBFORMING program’s ciutput of points P was verified to 
be accurate enough for the design hyperboloid. 

A. Check On Antenna Horizon Position 

In antenna operation, the reflective surfaces are “rigged” 
or set at 45 dsg elevation angle. As the antenna rotates to the 
horizon position, the main paraboloidal reflector not only 
distorts, but also changes in focal length as described by the 
best-fit paraboloid. The prime focus translation requires focus- 
ing motion of the design hyperboloidal subreflector as well as 

The SUBFORMING progam computes points P on the 
compensating subreflector. thus maintaining the equal path- 
length requirements for all rays, as described in Appendix A. 
In a spherical coordinate system as delineated in Fig. 2, the 
program outputs the radius K and the angles 0 and @ to 
locate points P and the vector normal to the surface of the 
compensating subreflector at points P. 
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shape changes tt maximize performance. By use of the SUE 
FORMING program, the original design hyperboloid can be 
proven to be in perfect focusing position for the shorter focal 
length best-fir paraboloid of the horizon position, if the 
distance a of Fig. 3 is correct. 

The computed parameters after the best-fit of a parabo- 
loid to  the distortions at horizon position are shown in Fig. 4 
with the contour map of the normal errors pictured in Fig. 5 
(generated by the RMS program). 

First, it was necessary to  locate the position Q of the 
design hyperboloid at focused position. This was accomplished 
by reducing the distortion of the best-fit paraboloid to  zero. 
Second, the curve of the subreflector generated by the SUR 
FORUING progranl was matched exactly to the original 
design hyperboloid by translating the generated subreflector 
until the normal corrections were reduced to very small values. 
This was accomplished by iteration of X ,  of Fig. 3 in the 
NORM program, and by changing the value of a. 

Firally, by using distances a and x, (computed above), 
the horizon position distortions were added to the SUB- 
FORMING program and the deformed shapes of the com- 
pensating subreflector (as described by normal corrections 
to  the design hyperboloid) were then contour plotted in 
Fig. 6. As expected, the normal corrections on the hyper- 
boloid are the exact picture of the paraboloid’s distortion as 
given by Fig. 5. 

B. Field Verification 

A comparison of the focused position of the &meter 
antenna hyperboloid computed in this article and field data 
is made. Figure 7 illustrates the computed hyperboloid focus 
travel from the 45deg setting position to the horizon posi- 
tion, which is 2.1 1 crn (0.83 in.). 

Figure 8 (Ref. 3) presents the field data where a rather large 
extrapolation is required to determine that the subreflector 
indicated iwveniellt is (2S4 cm -0.58 cmj or 1.96 cm (0.77 
in.). Since the field-indicated position of the subreflector is 
obtained from a revnlution counter on the jackscrew drive of 
the subreflector’s supporting system, the deflections of the 

jackscrew mechanism and the supports of the subreflector are 
lost. If some of the above noted lost deflection is added to the 
measured travel of 1.96 cm (0.77 in.), the field data will 
compare closely t 3  the computed 2.1 1-cm (0.83-in.) travel. 

It should be noted that there has been a lack of consistency 
of the indicated subreflector position betwer different RF 
feeds; this inconsistency has not been resolvei to date. A pos- 
sible reason involves the RF beamshaping peripheral flange, 
fitted around the hyperboloidal portion of the subreflector. 
This flange is effective in reducing feed spillover power beyond 
the paraboloid edge, and is optimum for S-band. The 30.48- 
cm (12-in.) radial distance of the flange (about 2h at S-band) 
is not optimum at other (particularly higher) frequencies. We 
believe that these field-measured subreflector positions for the 
antenna maximum gain are influenced by phase best fitting, 
of the feed wavefront ripples near the paraboloid rim. 

IV. Summary 
(1) The duplication of the distortions of the main parabo- 

loidal reflector and the compensating subreflector 
by contour maps indicated acctirate solutions by the 
SUBFORMING program. For improving the perfor- 
mance of a Cassegrain antenna, the subreflector surface 
can be altered mechanically as the antenna rotates 
from its “rigged” or setting elevation position. 

(2) The mathematical methods used in the SUBFORM- 
ING program were checked for accuracy by: (a) 
generating a perfect hyperboloidal subreflector for a 
perfect paraboloidal main reflector, and (b) determin- 
ing the new focus of the original design hyperboloid 
for a paraboloid with a changed focal length that 
checks the field measured value for the 64-meter 
antenna. 

(3) Deforming the subreflector of the 64-meter antenna 
to  match the bumps over the elevation bearing will 
be difficult to implenient because: (1) t’le sharp 
curvature changes will require stretching, and (2) 
additional stiffness is required of the subreflector to 
satisfy operational specifications in a high-wind 
environment. 
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Appendix A 

The Subforming Program 

I. theoryofoperatk9 tions. The 432 distinct points are available (from DSS 14 

A computer program has been developed, using geometric 
optics. for synthesizing the needed deformation of a subreflec- 
tor to  compensate for a deformed main reflector, maintaining 
R- path lengths and hence eliminating phase loss. This synthe- 
sis depends upon three factors to be determined about each 
main reflector point. These are: (a) the poirs. X ,  Y, and 2. 
(b) partial derivatives at each point, aia2, a/ap and a;a+ 
(choosing a cylindrical system) and. (c) a chDsen pathlength 
that must be held constant. The technique for doing this is as 
follows: at  a main reflector point, (deformed). determine the 
slopes of the surface, slap, a!aZ and ala$ (in cylindrical 
coordinates). and from this determine the components of the 
normals. nt ,  np, n J I .  The direction of the incoming rays is 
known. assumed in the -Z direction, and hence the reflected 

data) and the appropriate slopes are found ior each point. The 
approach chosen is to place a best-fit polynomial surface 
through nine points, eght  of them surrouuding the central 
point, as indicated in Fig. A-1. In this two-dimensionJ figure, 
the dimension 2 is not indicated, only the cylindrical coordi- 
nates p and $. The best-fit surface is theore:ically determined 
using available JPL computer subroutines. A separate surface 
is obtained for each deformed point of the paraboioid since 
the local surface ietermination will be at its best for the one 
central point. Exceptions are fcr the last point: (farthest) out 
on the antenna periphery (rim) and ihe innermost points near 
the vertex. In these cases, slopes are determined using the 
surface that is gene:ated about the next adjacent point on the 
radial. 

ray direction can be determined. The direction cosines for the 
.eflected ray are then calculated. This reflected ray must inter- 
sect the unknown (to be calculated) deformed subretlector 
and be reflected to the RF feed point. or focus. Total dis- 
tances for all rays must be equal and constant. This pathlength 
is somewhat arbitrary. The length used in the SUBFORMING 
program is the distance from the paraboloid aperture. ong the 
axes to  the paraboloid vertex, back to the original hyperboloi? 
vertex and back to the feed focus (or phase center). The ray 
direction and this pathlength requirement represent sufficient 
information to  determine the subreflector Foints, Y,, 

The best-fit surface generated for each deformed point will 
be represented by a quadratic equation 2 = g b, $) with six 
constants determined by :he subroutine. Partial derivatives are 
then determined and e v d u a t d .  Normals and direction cosines 
are calculated. The subreflector point (Xs, Us, Zs) is deter- 
mined as a point on the ray path which, with reflection, will 
fulfill the chosen equal pathlength rcquirement. The direction 
of the ray reflection is used to  calculate subreflector slopes 
and normals. Spherical and/or. cylidrical coordinates are 
obtainable directly from ‘,e Lartesian solution. 

Zs). The reflected ray will also determine the componints of 
the nqrrnal and the slopes, aZ,laA‘, and aZ,/aY,. This same 
data is used to calculate the points in the spherical coordinate 

Use of the computer prograrr is described in the f3Uowicg 
paragraphs. Input parameters are as shown in Fig. 1. 

system as is generally desired. (Ref. 4) 

Performing these operations upon a paraboloid that is 
deformed in some closed-form analog manner is fairly straight- 
forward. e.g., 

A Z =  A p cos N + 
Partial derivities can be evaluated at as many points 3s 

desired; normals and direction cosines and hence ray directions 
are determined and a matching subreflector point is obtained 
corresponding to the main reflector data point. However, with 
a real system (the 64-ineter, DSS 14 antenna), deformation 
data is presented in a regular fashion as digital error points 
along approximately equal 3dial distances from :he antennd 
vertex and at approximately equal angles around the azimuth 
direction $. No da!a regarding slopes are available and so a 
method should be found to detzrmine these required func- 

I!. Program Structure 
Distortion data are input as erroi ~ xitions, AX, AI’, and 

AZ, from the main reflector coordinate+ X ;  Y, a i d  Z. These 
distortion poiilts must be presented in a sequence that: (1) 
proceeds from an inner hub position, (2) proceets ol;t along 
an approximate radial line to a find position or this radial, 
(3) proceeds to a next-adjacent radial starting at the hck, dnd 
igain proceeds out this radial, and (4) continucs around the 
reflector suri’ace until completed. Angular positions between 
radials should be approximiateiy equal as should the radial 
spacing between listzd radial p in ts ,  i’oi improved program 
accuracy. The program is set *o accept up  to IS points on 
any radial position aid 60 radial lines, i.e.. 6 deg apart, fur 
a total of 900 distortion points. Thes- distor ;1 polrlti will 
generally be defined relative to an “idea) paraboloidal re- 
flector with ir coordinate s)stem, w i t h  hac its origiil at 
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the vertex and its Z-axis through a focpl ioint. A best-fit 
paraboloid is recognized as a better fit to the distorted sptem. 
In this case. it is desirable to defme a new coordinate system 
according to  this best-fit paraboloid vertex and focal length. 
This coordinate system is input to  the program. 

The solution is a set of output points P defining a subreflec- 
tor contour. Each point matches. on a one-toane basis, a 
point on the dlstor~ed paraboloid. The dope of and the normal 
to the surfacx are determined for each point. The data appear 
on three files when the program is executed. The fmt file CLI- 

tains the input data concerning the &I reflector, the second 
file contains subreflec:or data in spherical cwrdinates, and the 
third file contains the same data in C a r t e s h  c<wrdinates. 
These fries a n  then be recorded 21 a data fiie, punched or 
placed on temporary files, and printed. 

111. Inputs 
1. Title 

2. FMO 

3. FCO 

4. FM 

5.  D 

6. FC 

your choice 

focal length of original “ideal” 
paraboloid 

focal length of original hyperboloid 

focal length of chosen “best-fit” 
paraboloid, can be the original focal 
length. FMO. 

diameter of main reflector 

focal length of chosen subreflectar. 
i.e., distance from feed focus to  the 
focal p i n t  qt €3f, could be I;%O 

7. SMA 

8. PDSC 

9. HZ 

10. HY 
11. ZETA 

12. JMAX 

13- KMAX 

14. X(J. K )  
Y(J, K )  
Z(J, K )  

the dimension “a” of a hyperboloid, 
taken from the chosen vertex of the 
subreflector to  the origin of X i 2  

feed displacement relative to  the 
’ideal” paraboloid reflector axis in 
Y direction only 

best-fit vertex translation in 2 direc- 
tion. taken from original cocrdinate 
system origin (may be 3.0) 

as HZ, but in Y idirection 

best-fit axis rotation relative to 
original axis, in Y-2 plane o d y  (may 
be 0.0) 

Number of data points on one radial; 
must be equal for a l l  radials 

Number of radial lines 

Coordinates of point (J, K )  on the 
originzl “idea?’ reflector. 

Distortion magnitude in the X. U, 
and Z directions to the final reflector 

IV. output 
The printed outpct .onsists of the listed input main reflec- 

tor (deformed) data 21 he new Coordinate system and the 
solution for the subreflect<- in spherical coordinates in this 
same coordinate system. 
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Appendix B 

NORM Program 

Referring to Fig. 3, the equation for tile normal PS was 
developed, and after its intercept to  the h;perLoloid (two 
dimensional analysis in plane $J, see Fig.2) was calculated, 

equation of the normal is a2 b2 

The hyperbola equation is 

( 5 3 )  
x2 Y2 - its length between the point P and S was computed. The - ---  

Y = m X + d  

where 

X, = R COS 9 -270 

Y ,  = R s i n 9  

a = -90 + c0s-l (norm/theta) + 9 

m =  t a n a  

d = Y,-X, tans 

Substituting ai. ,e values in Q. (B-I), 

X = ( T A ) Y - C l  

where 

TA = l/tan Q 

or 

x, = c, Y ,  - -  
tana 

‘B-l) Substituting equation ( 5 2 )  into ( 5 3 )  for X and solving the 
resulting equation by the binomial equation, the intercepts 
on hyperbola become 

a2 
-3 CA = T A ~  

CB = -2TACI 

cc = c12 -.!2 


