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Using a Cassegrainian geometry, the 64-meter antenna with its distorted paraboloidal
reflecting surface can be forced to produce a uniform phase wavefront by a pathlength-
compencating subreflector. First, the computed distortion vectors at the joints or nodes
of the main reflector structure supporting the surface panels are best fitted to a parabo-
loid. Second, the resulting residual distortion errors are used to determine a ¢+, ensating

subreflector surface by ray tracing using geometric optics principles. Thi “tally
corrected subreflector surface is defined by the normal directions aru d to the

surface of the original symme:ric hyperboloid for the purpose <f evaluai.-n. Finally,
contour maps of distortions of the paraboloid reflector and the compensating subreflec-
tor are presented. A field-measurcd check of the subreflector in focused p.sition as com-
puted by the described methodology is also presented for the antenna position at horizon
look with the geometry at 45 degrees elevation.

Using a geometnc-optics based ray-tracing technique in a
subreflector-forming (SUBFORMING) computer program, the
RF pathlength error introduced by the paraboloid’s distortion
may theoretically be compensated for at the subreflector’s
surface for each defined ray.

l. Introduction

In the Cassegrainian radiofrequency (RF) antenna, the
spherical wavefront emanating from the RF feed reverses
direction at the hyperboloid focus, then it is reflected by the
paraboloid reflector into a flat, uniform-phase wavefront to
space. Since the diameter of the paraboloid 15 generally about
ten times larger than the hyperboloid (and therefore more

The 64-meter antenna reflector structure (at DSS 14),
with structural brace modification included. has been modeled

massive), its surface errors can introduce much larger distor-
tions to the reflecting RF rays and hence intrcduce larger
pathlength differences to the desired planar wavefront. The
subreflec. .r surface errors are usually minor or negligible in
comparison,

using NASTRAN computer ar lysis to compute distortions
caused by environmental loads, e.g., gravity loading due to
elevation angle motion. The distortions of the structural
joints of the forty-cight main radial ribs (Ref. 1) were com-
puted for the gravity loading at the antenna’s horizon position
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(elevation angle = Q) with the surface panels previously set to
the design paraboloid at a 45-deg elevation angle. A paraboloid
was best fitted to these distcrtions using the RMS program
(Ref. 2) and the resulting antenna variables -vere used in
the SUBFORMING program and evaluated by the NORM
program.

Il. Analysis Steps

The input data required by the geometric optics-based pro-
gram SUBFORMING (see Appendix A) are delineated in
Fig. 1. The main reflector structure’s computed distortions
in Cartesian coordinates AX, AY, and AZ are added vectori-
ally to the undeformed coordinates of the refiector structure
to define the distorted shape. A new best-fit paraboloid is
then determined for this distorted shape using the RMS
program (Ref. 2), which defines a new coordinate system for
the new paraboloid (which has been rotated and translated
relative to the original). The rotation-translation of the best-
fit paraboioid is indicated in Fig. 1 by ZETA (rotation) and
HZ, HY (translations).

The RF feed phase center is defined in Fig. 1 by PDSC. The
RF feed phase center and the focus of the best-fit paraboloid
have deflected from gravity loading, assuming that the hyper-
boloid system is focused axially and laterally. The hyperbo-
loid focal length FCO has changed to FC due to the deflec-
tions of the RF feed and the change in focal length of the
paraboloid.

The original nodes of the paraboloid (before the distortions
AX, AY, and AZ) were located on radial lines equally spaced
at 7.5 deg (y) around the central axis and in approximately
equal intervals (9 points) along the radials. However, with
distortions and surface-slope changes resulting from gravity
loading, a ray paraliel to the axis of tbe best-fit paraboloid
will not necessarily stay in the plane defined by the ray and
the hyperbolowd’s axis as the ray rflects from the distorted
surface of the paraboloid. When this reflected ray impinges on
a symmetric hyperboloidal subreflector and is again reflected,
it will miss the RF feed phase center. Therefore, a compensat-
ing reflecting surface on the subreflector will be required to
maintain focus.

The SUBFORMING progiam computes points P on the
compensating subreflector. thus maintaining the equal path-
length requirements for all rays, as described in Appendix A.
In a spherical coordinate system as delineated in Fig. 2, the
program outputs the radius R and the angles 8 and ¢ to
locate points P and the vector normal to the surface of the
compensating subreflector at points P.

One assumptior was wad¢ at this time: the normal to the
compensating subreflector lies in the ¢-plane, although SUB-
FORMING may not generate this answer for distorted parabo-
loids. This reduces the solution of the normal corrections
with respect to the design hyperboloid parameters to a two-
dimensional problem. The normal corrections computed for
each ¢ value could then be used to plot the surface contours
with minor errors.

Referring to Fig. 3, the equation of the normal correction,
PS, can be developed from the data described in Fig. 2 (see
Appendix B). The normal’s intercept point, S, on the hyperbo-
loid is computed and the normal length PS (required correc-
tion) is then computed.

The above described steps were incorporated in the com-
puter program NORM with an added provision to translate
points P parallel to the symmetric axis 0Q of Fig. 3 to simu-
late the focusing motion along the symmetric axis of the
hyperboloid.

The computed normal corrections may be contour plotted
using JPL’s plotting subroutines where the intersection points
of the normals and the hyperboloid are not required to be
uniformly spaced.

lll. Solution Verification

One check of the methodology was made by considering
the 64-meter antenna reflector data with no distortions as
inputs to the SUBFORMING program using the design values
(Fig. 3) for the 45-deg elevatior as follows:

Paraboloid focal length: 26.0933 m (1027.294 in.)

Hyperboloid parameters: a = 4.5219 m (178.029 in.)
b= 5.1560 m (202.992 in.)
¢ = 6.8580 m(270.000in.)

The answers from the SUBFORMING program were input
to the NORM program; the largest normal corrections were
fcuid to be 0.0015 mm (0.00006 in.). In other words, the
SUBFORMING program’s cutput of points P was verified to
be accurate enough for the design hyperboloid.

A. Check On Antenna Horizon Position

In antenna operation, the reflective surfaces are “rigged”
or set at 45 deg elevation angle. As the antenna rotates to the
horizon position, the main paraboloidal reflector not only
distorts, but also changes in focal length as described by the
best-fit paraboloid. The prime focus translation requires focus-
ing motion of the design hyperboloidal subreflector as well as



shape changes t. maximize performance. By use of the SUB-
FORMING program, the original design hyperboloid can be
proven to be in perfect focusing position for the shorter focal
length best-fit paraboloid of the horizon position, if the
distance 2 of Fig. 3 is correct.

The computed parameters after the best-fit of a parabo-
loid to the distortions at horizon position are shown in Fig. 4
with the contour map of the normal errors pictured in Fig. 5
(generated by the RMS program).

First, it was necessary to locate the position @ of the
design hyperboloid at focused position. This was accomplished
by reducing the distortion of the best-fit paraboloic to zero.
Second, the curve of the subreflector generated by the SUB-
FORMING programy was matched exactly to the original
design hyperboloid by translating the generated svbreflector
until the normal corrections were reduced to very small values.
This was accomplished by iteration of X of Fig. 3 in the
NORM program, and by changing the value of a.

Firally, by using distances a and x, (computed above),
the horizon position distortions were added to the SUB-
FORMING program and the deformed shapes of the com-
pensating subreflector (as described by normal corrections
to the design hyperboloid) were then contour plotted in
Fig. 6. As expected, the normal corrections on the hyper-
boloid are the exact picture of the paraboloid’s distortion as
given by Fig. 5.

B. Field Verification

A comparison of the focused position of the 64-meter
antenna hyperboloid computed in this article and field data
is made. Figure 7 illustrates the computed hyperboloid focus
travel from the 45-deg setting position to the horizon posi-
tion, which is 2.11 cm (0.83 in.).

Figure 8 (Ref. 3) presents the field data where a rather large
extrapolation is required to determine that the subreflector
indicated movemert is (2.54 ¢m -0.58 ¢cm) or 1.96 cm (0.77
in.). Since the field-indicated position of the subreflector is
obtained from a revolution counter on the jackscrew drive of
the subreflector’s supporting system, the deflections of the

jackscrew mechanism and the supports of the subreflector are
lost. If some of the above noted lost deflection is added to the
measured travel of 1.96 cm (0.77 in.), the field data will
compare closely to the computed 2.11-cm (0.83-in.) travel.

It should be noted that there has been a lack of consistency
of the indicated subreflector position betwee different RF
feeds; this inconsistency has not been resolve( 10 date. A pos-
sible reason involves the RF beamshaping peripheral flange,
fitted around the hyperboloidal portion of the subreflector.
This flange is effective in reducing feed spillover power beyond
the paraboloid edge, and is optimum for S-band. The 30.48-
cm (12-in.) radial distance of the flange (about 2A at S-band)
is not optimum at other {particularly higher) frequencies. We
believe that these field-measured subreflector positions for the
antenna maximum gain are influenced by phase best fitting,
of the feed wavefront ripples near the paraboloid rim.

IV. Summary

(1) The duplication of the distortions of the main parabo-
loidal reflector and the compensating subreflector
by contour maps indicated accurate solutions by the
SUBFORMING program. For improving the perfor-
mance of a Cassegrain antenna, the subreflector surface
can be altered mechanically as the antenna rotates
from its “rigged”’ or setting elevation position.

(2) The mathematical methods used in the SUBFORM-
ING program were checked for accuracy by: (a)
generating a perfect hyperboloidal subreflector for a
perfect paraboloidal main reflector, and (b) determin-
ing the new focus of the original design hyperboloid
for a paraboloid with a changed focal length that
checks the field measured value for the 64-meter
antenna.

(3) Deforming the subreflector of the 64-meter antenna
to match the bumgps over the elevation bearing will
be difficult to implement because: (1) the sharp
curvature changes will require stretching, and (2)
additional stiffness is required of the subreflector to
satisfy operational specifications in a high-wind
environment.
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Appendix A
The Subforming Program

I. Theory of Operaticn

A computer program has been developed, using geometric
optics, for synthesizing the needed deformation of a subreflec-
tor to compensate for a deformed main reflector, maintaining
R™ path lengths and hence eliminating phase loss. This synthe-
sis depends upon three factors to be determined about each
main reflector point. These are: (a) the point. X, Y, and Z,
(b) partial derivatives at each point, 8/0Z, 3/dp and 3/9y
(choosing a cylindrical system) and. (c) a chosen pathiengtk.
that must be held constant. The technique for doing this is as
follows: at a main reflector point, {deformed). determine the
slopes of the surface, 3/dp, 9/dZ and 93/0y (in cylindrical
coordinates). and from this determine the components of the
normals. n,, n,, n . The direction of the incoming rays is
known. assumed in the -Z direction, and hence the reflected
ray direction can be determined. The direction cosines for the
.eflected ray are then calculated. This reflected ray must inter-
sect the unknown (to be calculated) deformad subreflector
and be reflected to the RF feed point. or focus. Total dis-
tances for all rays must be equal and constant. This pathlength
is somewhat arbitrary. The length used in the SUBFORMING
program is the distance from the paraboloid aperture . ong the
axes to the paratoloid vertex, back to the original hyperboloic
vertex and back to the feed focus (or phase center). The ray
direction and this pathlength requirement represent sufficient
information to deteimine the subreflector points, (Xg. Y,
Zg). The reflected ray will also determine the components of
the n~rmal and the slopes, 3Z¢/dXg and 3Z¢/dY g. This same
data is used to calculate the points in the spherical coordinate
system as is generally desired. (Ref. 4)

Performing these operations upon a paraboloid that 1s
deformed in some closed-form analog manner is fairly straight-
forward. e.g.,

AZ=ApcosNy

Partial derivities can be evaluated at as many points as
desired; normals and direction cosines and hence ray directions
are determined and a matching subreflector point is obtained
corresponding to the main reflector data point. However, with
a real system (the 64-meter, DSS 14 antenna), deformation
data is presented in a regular fashion as digital error points
along approximately equa' -1dial distances from the antenna
vertex and at approximately equal angles around the azimuth
direction . No data regarding slopes are available and so a
method should be found to determine these required func-

tions. The 432 distinct points are available (from DSS 14
data) and the appropriate slopes are found ror each point. The
approach chosen is to place a best-fit polynomial surface
through nine points, eight of them surrounding the central
point, as indicated in Fig. A-1. In this two-dimensional figure,
the dimension Z is not indicated, only the cylindrical coordi-
nates p and . The best-fit surface is theoretically determined
using available JPL computer subroutines. A separate suriace
is obtained for each deformed point of the paraboloid since
the local surface letermination will be at its best for the one
central peint. Exceptions are for the last point: (farthest) out
on the antenna periphery (rim) and the innermost points near
the vertex. In these cases, slopes are determined using the
surface that is generated about the next adjacent point on the
radial.

The best-fit surface generated for each deformed point will
be represented by a guadratic equation Z = g (p, ¥) with six
constants determined by the subroutine. Partial derivatives are
then determined and evaiuaicd. Normals and direction cosines
are calculated. The subreflector point (Xg, Yg, Zg) is deter-
mined as a point on the ray path which, with reflection, will
fulfill the chosen equal pathlength rcquirement. The direction
of the ray reflection is used to calculate subreflector slopes
and normals. Spherical andfor cylindrical coordinates are
obtainable directly from ‘.e Lartesian solution.

Use of the computer prograr is described in the following
paragraphs. Input parameters gre as shown in Fig. 1.

il. Program Structure

Distortion data are input as erroi _ositions, AX, AY, and
AZ, from the main reflector coordinates, X, Y, and Z. These
distortion points must be presented in a sequence that: (1)
proceeds from an inner hub position, {2) proceeds out along
an approximate radial line to a finai position or this radial,
(3) proceeds to a next-adjacent radial starting at the hut, und
again proceeds out this radial, and (4) continucs around the
reflector surrace until completed. Angular positions between
radials should be approximately equal as should the radial
spacing between listed radial points, {o1 improved program
accuracy. The program is set *o accept up to 15 points on
any radial position and 60 radial lines, i.e., 6 deg apart, for
a total of 900 distertion points. These distor  a ponts will
generally be defined relative to an “iderar paraboloidal re-
flector with a coordinate system, wmch hac its origin at
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the vertex and its Z-axis through a focal ,oint. A best-fit
paraboloid is recognized as a better fit to the distorted system.
In this case, it is desirable to define a new coordinate system
according to this best-fit paraboloid vertex and focal length.
This coordinate system is input to the program.

The solution is a set of output points P defining a subreflec-
tor contour. Each point matches. on a one-to-one basis, a
point on the distoried paraboloid. The slope of and the normal
to the surface are determined for each point. The data appear
on three files when the program is executed. The first file cc.r-
tains the input data concerning the main reflector, the second
file contains subreflector data in spherical coordinates, and the
third file contains the same data in Cartesian coordinates.
These files c»n then be recorded .n a data file, punched or
placed on temporary files, and printed.

. Inputs

1. Title =  your choice

2. FMO = focal length of original “ideal”
paraboloid

3. FCo = focal length of original hyperboloid

4. M = focal length of chosen “best-fit”
paraboloid, can be the original focal
length, FMO.

5. D = diameter of main reflector

6. FC = focal length of chosen subreflector,

i.e., distance from feed focus to the
focal point at FM, could be £CO
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7. SMA = the dimension “a” of a hyperboloid,
taken from the chosen vertex of the
subreflector to the origin of FC,2

8. PDSC = feed displacement relative to the
“ideal” paraboloid reflector axis in
Y direction only

9. HZ = best-fit vertex translation in Z direc-
tion, taken from original cocrdinate
system origin {may be 0.0)

10. HY = as HZ, but in Y idirection
11. ZETA = best-fit axis rotation relative to
original axis, in Y-Z plane oaly (may
be 0.0)
12. JMAX = Number of data points on one radial;
must be equal for all radials
13. KMAX = Number of radial lines
14. !’fgg _ Coordinates of point (J, K) on the
ZU.K) ‘ originzl “idea” reflector.
15. [D;;,g{’ ?) _ Distortion magnitude in the X, Y,
DZ(} 7. K) and Z directions to the final reflector
IV. Output

The printed output -onsists of the listed input main reflec-
tor (deformed) data :n he new coordinate system and the
solution for the subreflect. in spherical coordinates in this
same coordinate system.
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Appendix B °

NORM Program

Referring to Fig. 3, the equation for tihe normal PS was  The hyperbola equation is
developed, and after its intercept to the h_per.oloid (two
dimensional analysis in plane ¢, see Fig.2) was calculated,
its length between the point P and S was computed. The
equation of the normal is

~

YZ
s

=] (B-3)

o

Y=mX+d (B-1
&-h Substituting equation (B-2) into (B-3) for X and solving the

resulting equation by the binomial equation, the intercepts
on hyperbola become
X = Rcosf-270

Y, = Rsinf _ -CB* NCB® - 4-CA-CC

o 2-CA
a = -90 +cos! (norm/theta) + 9
m = tana ——
d= Y, -X, tana P L |
H 1%
Substituting at* e values in Eq. (B-1),
X=(TA)Y-Cl (82 “here
whe.2 2
= T42 -
TA = 1/tan ca T4 b2
or CB = -2TACI
Y
— - X =C
tan o CC = C1%-.2



