7,122 research outputs found

    Phase diagram of depleted Heisenberg model for CaV4O9

    Full text link
    We have numerically investigated the 1/5-depleted Heisenberg square lattice representing CaV4O9 using the Quantum Monte Carlo loop algorithm. We have determined the phase diagram of the model as a function of the ratio of the two different couplings: bonds within a plaquette and dimer bonds between plaquettes. By calculating both the spin gap and the staggered magnetization we determine the range of stability of the long range ordered (LRO) phase. At isotropic coupling LRO survives the depletion. But the close vicinity of the isotropic point to the spin gap phase leads us to the conclusion that already a small frustrating next nearest neighbor interaction can drive the system into the quantum disordered phase and thus explain the spin gap behavior of CaV4O9

    Quantum Wire-on-Well (WoW) Cell With Long Carrier Lifetime for Efficient Carrier Transport

    Get PDF
    A quantum wire-on-well (WoW) structure, taking advantage of the layer undulation of an In- GaAs/GaAs/GaAsP superlattice grown on a vicinal substrate, was demonstrated to enhance the carrier collection from the confinement levels and extend the carrier lifetime (220 ns) by approximately 4 times as compared with a planar reference superlattice. Strained InGaAs/GaAs/GaAsP superlattices were grown on GaAs substrates under exactly the same condition except for the substrate misorientation (0o- and 6o- off). The growth on a 6o-off substrate induced significant layer undulation as a result of step bunching and non-uniform precursor incorporation between steps and terraces whereas the growth on a substrate without miscut resulted in planar layers. The undulation was the most significant for InGaAs layers, forming periodically aligned InGaAs nanowires on planar wells, a wire-on-well structure. As for the photocurrent corresponding to the sub-bandgap range of GaAs, the light absorption by the WoW was extended to longer wavelengths and weakened as compared with the planar superlattice, and almost the same photocurrent was obtained for both the WoW and the planar superlattice. Open-circuit voltage for the WoW was not affected by the longer-wavelength absorption edge and the same value was obtained for the two structures. Furthermore, the superior carrier collection in the WoW, especially under forward biases, improved fill factor compared with the planer superlattice

    Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Get PDF
    Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.Received: 20 November 2009; Revised: 31 August 2010; Accepted: 31 August 201

    An Examination of Chimpanzee Use in Human Cancer Research

    Get PDF
    Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases

    Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Get PDF
    Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.Received: 20 November 2009; Revised: 31 August 2010; Accepted: 31 August 201

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure

    On the presence of mid-gap states in CaV4O9

    Full text link
    Using exact diagonalizations of finite clusters with up to 32 sites, we study the J1−J2J_1-J_2 model on the 1/5 depleted square lattice. Spin-spin correlation functions are consistent with plaquette order in the spin gap phase which exists for intermediate values of J2/J1J_2/J_1. Besides, we show that singlet states will be present in the singlet-triplet gap if J2/J1J_2/J_1 is not too small (J2/J1≳0.47J_2/J_1 \gtrsim 0.47). We argue that this property should play a central role in determining the exchange integrals in CaV4O9{\rm CaV}_4{\rm O}_9Comment: 4 pages, 5 postscript figure
    • …
    corecore