research

First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

Abstract

Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020