8 research outputs found

    Upregulated expression of ENaC in human CF nasal epithelium

    Get PDF
    AbstractCystic fibrosis (CF) is characterised by the absence of CFTR function resulting in a reduced Cl− secretion and an increase in Na+ absorption. This Na+ hyperabsorption is mediated by the human amiloride-sensitive epithelial sodium channel (ENaC), but the underlying mechanisms are still unknown. After demonstrating functional differences of the Na+ absorption in CF and non-CF epithelia in Ussing chamber experiments with human primary cultures, we compared ENaC sequences from CF and non-CF human nasal tissue (hnENaC), investigated the mRNA transcription levels via real-time PCR and studied the protein expression in Western blot analyses. We found no differences in the sequences of CF and non-CF hnENaC, but identified some polymorphisms. The real-time experiments revealed an enhanced mRNA amount of all three hnENaC subunits in CF tissue. By comparing the two groups on the protein level, we observed differences in the abundance of the Na+ channel. While the α- and β-hnENaC protein amount was increased in CF tissue the γ-hnENaC was decreased. We conclude that the Na+ hyperabsorption in CF is not caused by mutations in hnENaC, but by an increase in the transcription of the hnENaC subunits. This could be induced by a disturbed regulation of the channel in CF

    A scalable and highly immunogenic virus‐like particle‐based vaccine against SARS‐CoV‐2

    Get PDF
    Background SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. Methods Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT-RBM. Results Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. Conclusion Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term

    Surveillance of myelodysplastic syndrome via migration analyses of blood neutrophils : a potential prognostic tool

    No full text
    Autonomous migration is a central characteristic of immune cells, and changes in this function have been correlated to the progression and severity of diseases. Hence, the identification of pathologically altered leukocyte migration patterns might be a promising approach for disease surveillance and prognostic scoring. However, because of the lack of standardized and robust assays, migration patterns have not been clinically exploited so far. In this study, we introduce an easy-to-use and cross-laboratory, standardized two-dimensional migration assay for neutrophil granulocytes from peripheral blood. By combining time-lapse video microscopy and automated cell tracking, we calculated the average migration of neutrophils from 111 individual participants of the German Heinz Nixdorf Recall MultiGeneration study under steady-state, formyl-methionyl-leucyl-phenylalanine-, CXCL1-, and CXCL8-stimulated conditions. Comparable values were obtained in an independent laboratory from a cohort in Belgium, demonstrating the robustness and transferability of the assay. In a double-blinded retrospective clinical analysis, we found that neutrophil migration strongly correlated with the Revised International Prognostic Scoring System scoring and risk category of myelodysplastic syndrome (MDS) patients. In fact, patients suffering from high-risk subtypes MDS with excess blasts I or II displayed highly significantly reduced neutrophil migration. Hence, the determination of neutrophil migration patterns might represent a useful tool in the surveillance of MDS. Taken together, we suggest that standardized migration assays of neutrophils and other leukocyte subtypes might be broadly applicable as prognostic and surveillance tools for MDS and potentially for other diseases

    A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2.

    Get PDF
    BACKGROUND SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term
    corecore