10 research outputs found

    Perfil do produtor de leite da região de Joanópolis/SP: como ele lida com o controle do carrapato Rhipicephalus microplus e de outras doenças de importância veterinária

    No full text
    RESUMO: Este estudo verificou o perfil do produtor de leite do município de Joanópolis, SP, situado a 115 km de São Paulo, e como esse produtor lida com o controle do carrapato e outras doenças importantes na pecuária leiteira. Quarenta produtores de leite foram entrevistados. Verificou-se que grande parte deles se enquadra em agricultura familiar: pequenas propriedades com mão-de-obra familiar. Verificou-se que 72,5% possuem outra fonte de renda além do leite; 75% produzem menos que 100 litros de leite por dia, e a maioria não é tecnificada (ordenha manual: 72,5 %; não faz escrituração zootécnica: 55%; não aduba pastos: 80%; não utiliza inseminação artificial: 87,5%). O controle do carrapato é feito sem critérios técnicos; a aplicação do carrapaticida é feita no mesmo local da ordenha; 90% não usam equipamentos de proteção individual para aplicar o carrapaticida. O gado prevalente é o mestiço Girolando (87,5%), que, por ser mais resistente ao carrapato, deve contribuir para que 57,5% dos entrevistados estejam satisfeitos com o controle do carrapato. Verificou-se que poucos produtores (apenas 12,5%) possuem assistência técnica constante. Isso pode ser a explicação para o baixo uso de tecnologias e nas falhas observadas no diagnóstico das doenças e no controle do carrapato

    Control of Dermatobia hominis larvae by manual extraction is effective and does not cause abscesso

    No full text
    ABSTRACT: In order to study alternative ways of control of Dermatobia hominis fly larvae, three processes were tested: T1, cypermethrin 5% + chlorpyrifos 7% + citronellal 0.5% (Pour on); T2, trichlorfon powder dissolved at 2% in burnt oil passed on the nodules; T3, manual larva extraction. The study was conducted at Instituto de Zootecnia in Nova Odessa, São Paulo State, Brazil. In a dairy herd of 176 animals, 29 with at least one larvae were found, distributed in the three treatments. Each treatment’s efficacy percentage was based on the number of live botflies present after 14 days. The animals were observed on days +4, +7, +14 and +21, and new botflies and abscesses were annotated. All treatments presented high effectiveness (above 98%). New botflies were already seen in the first week after applying the three treatments, and on day 21, two abscesses in each chemical treatment were observed. Larva extraction was 100% effective, with no originating abscesses, and should be encouraged in small and medium-sized properties and those with resistant botflies to chemical products

    Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use

    Get PDF
    AbstractThe most challenging obstacles to testing products for their anthelmintic activity are: (1) establishing a suitable nematode in vitro assay that can evaluate potential product use against a parasitic nematode of interest and (2) preparation of extracts that can be redissolved in solvents that are miscible in the test medium and are at concentrations well tolerated by the nematode system used for screening. The use of parasitic nematodes as a screening system is hindered by the difficulty of keeping them alive for long periods outside their host and by the need to keep infected animals as sources of eggs or adults when needed. This method uses the free-living soil nematode Caenorhabditis elegans as a system to screen products for their potential anthelmintic effect against small ruminant gastrointestinal nematodes, including Haemonchus contortus. This modified method uses only liquid axenic medium, instead of agar plates inoculated with Escherichia coli, and two selective sieves to obtain adult nematodes. During screening, the use of either balanced salt solution (M-9) or distilled water resulted in averages of 99.7 (±0.73)% and 96.36 (±2.37)% motile adults, respectively. Adult worms tolerated DMSO, ethanol, methanol, and Tween 80 at 1% and 2%, while Labrasol® (a bioenhancer with low toxicity to mammals) and Tween 20 were toxic to C. elegans at 1% and were avoided as solvents. The high availability, ease of culture, and rapid proliferation of C. elegans make it a useful screening system to test plant extracts and other phytochemical compounds to investigate their potential anthelmintic activity against parasitic nematodes

    Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity

    No full text
    Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional benefits, and antioxidant capacity of alternative forages containing hydrolyzable tannins (HT). We evaluated the anthelmintic activity and the antioxidant capacity of plant extracts containing either mostly CT, mostly HT, or both CT and HT. Extracts were prepared with 70% acetone, lyophilized, redissolved to doses ranging from 1.0mg/mL to 25mg/mL, and tested against adult Caenorhabditis elegans as a test model. The extract concentrations that killed 50% (LC50) or 90% (LC90) of the nematodes in 24h were determined and compared to the veterinary anthelmintic levamisole (8mg/mL). Extracts were quantified for CT by the acid butanol assay, for HT (based on gallic acid and ellagic acid) by high-performance liquid chromatography (HPLC) and total phenolics, and for their antioxidant activity by the oxygen radical absorbance capacity (ORAC) assay. Extracts with mostly CT were Lespedeza cuneata, Salix X sepulcralis, and Robinia pseudoacacia. Extracts rich in HT were Acer rubrum, Rosa multiflora, and Quercus alba, while Rhus typhina had both HT and CT. The extracts with the lowest LC50 and LC90 concentrations, respectively, in the C. elegans assay were Q. alba (0.75 and 1.06mg/mL), R. typhina collected in 2007 (0.65 and 2.74mg/mL), A. rubrum (1.03 and 5.54mg/mL), and R. multiflora (2.14 and 8.70mg/mL). At the doses of 20 and 25mg/mL, HT-rich, or both CT- and HT-rich, extracts were significantly more lethal to adult C. elegans than extracts containing only CT. All extracts were high in antioxidant capacity, with ORAC values ranging from 1800μmoles to 4651μmoles of trolox equivalents/g, but ORAC did not correlate with anthelmintic activity. The total phenolics test had a positive and highly significant (r=0.826, p≤0.01) correlation with total hydrolyzable tannins. Plants used in this research are naturalized to the Appalachian edaphoclimatic conditions, but occur in temperate climate areas worldwide. They represent a rich, renewable, and unexplored source of tannins and antioxidants for grazing ruminants, whereas conventional CT-rich forages, such as L. cuneata, may be hard to establish and adapt to areas with temperate climate. Due to their high in vitro anthelmintic activity, antioxidant capacity, and their adaptability to non-arable lands, Q. alba, R. typhina, A. rubrum, and R. multiflora have a high potential to improve the health of grazing animals and must have their anthelmintic effects confirmed in vivo in both sheep and goats. © 2012

    Haemonchus contortus: A multiple-resistant Brazilian isolate and the costs for its characterization and maintenance for research use

    No full text
    The aim of this work was to determine the resistance level of Haemonchus contortus isolated from the Santa Inês flock of the Embrapa (Brazilian government's Agricultural Research Company), Southeast Livestock Unit (CPPSE), as well as to determine costs of characterizing and maintaining this isolate in host donors. Forty-two male Santa Inês lambs were experimentally infected with 4000 H. contortus infective larvae of the field isolate of CPPSE, called Embrapa2010, and divided into six treatment groups, which received triclorfon, albendazol plus cobalt sulfate, ivermectin, moxidectin, closantel and levamisole phosphate, as well as a negative control group (water). Egg per gram (EPG) counts were performed at 0, 3, 7, 10 and 14. days post treatment when the animals were slaughtered for parasite count. The data were analyzed using the RESO statistical program, considering anthelmintic resistance under 95% of efficacy. EPG and worm count presented a linear and significant relation with 94% determination coefficient. The susceptibility results obtained by RESO through both criteria (EPG and worm count) were equal, except for closantel, showing that the isolate Embrapa2010 is resistant to benzimidazoles, macrocyclic lactones and imidazothiazoles. The need of a control group did not appear to be essential since the result for susceptibility in the analyses with or without this group was the same. Suppression in egg production after treatment did not occur in the ivermectin and moxidectin groups. In the control group, the establishment percentage was just 12.5 because of the low number of third-stage larvae, resistance (innate and infection immunity) of the animals studied plus good nutrition. Drug classes presented similar efficacy between adults and immature stages. The costs for isolate characterization were calculated for 42 animals during 60. days. The total cost based on local market rates was approximately US8000.ThepreciseidentificationofBrazilianisolatesandtheirestablishmentinhostdonorswouldbeusefulforlaboratorialanthelminticresistancediagnosesthroughinvitrotests,whichhasanannualcostofapproximatelyUS 8000. The precise identification of Brazilian isolates and their establishment in host donors would be useful for laboratorial anthelmintic resistance diagnoses through in vitro tests, which has an annual cost of approximately US 2500 for maintenance in host donors. © 2012 Elsevier B.V

    Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana.

    No full text
    Gastrointestinal nematodes are a major threat to small ruminant rearing in the Sahel area, where farmers traditionally use bioactive plants to control these worms, including Acacia nilotica and Acacia raddiana. The main aim of this study was to screen the potential anthelmintic properties of aqueous and acetone extracts of leaves of these two plants based on three in vitro assays: (1) the egg hatch inhibition assay (EHA); (2) the larvae exsheathment inhibition assay (LEIA) using Haemonchus contortus as a model; and (3) an adult mortality test (AMT) applied on Caenorhabditis elegans. For the EHA, only A. raddiana was effective with IC50 = 1.58 mg/mL for aqueous extract, and IC50 = 0.58 mg/mL for acetonic extract. For the LEIA, all extracts inhibited the exsheathment of larvae compared to the controls, and the aqueous extract of A. nilotica was more larvicidal with IC50 = 0.195 mg/mL. In general, all responses to the substances were dose-dependent and were significantly different from the control group (p < 0.05). For the AMT, the extracts of the two Acacia species were effective but A. raddiana showed greater efficacy with 100% mortality at 2.5 mg/mL and LC50 = 0.84 mg/mL (acetonic extract). The addition of polyvinyl polypyrrolidone (PVPP) to the extracts suggested that tannins were responsible for blocking egg eclosion and inducing adult mortality but were not responsible for exsheathment inhibition. These results suggest that the leaves of these Acacia species possess ovicidal and larvicidal activities in vitro against H. contortus, and adulticidal effects against C. elegans

    Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana

    No full text
    Gastrointestinal nematodes are a major threat to small ruminant rearing in the Sahel area, where farmers traditionally use bioactive plants to control these worms, including Acacia nilotica and Acacia raddiana. The main aim of this study was to screen the potential anthelmintic properties of aqueous and acetone extracts of leaves of these two plants based on three in vitro assays: (1) the egg hatch inhibition assay (EHA); (2) the larvae exsheathment inhibition assay (LEIA) using Haemonchus contortus as a model; and (3) an adult mortality test (AMT) applied on Caenorhabditis elegans. For the EHA, only A. raddiana was effective with IC50 = 1.58 mg/mL for aqueous extract, and IC50 = 0.58 mg/mL for acetonic extract. For the LEIA, all extracts inhibited the exsheathment of larvae compared to the controls, and the aqueous extract of A. nilotica was more larvicidal with IC50 = 0.195 mg/mL. In general, all responses to the substances were dose-dependent and were significantly different from the control group (p < 0.05). For the AMT, the extracts of the two Acacia species were effective but A. raddiana showed greater efficacy with 100% mortality at 2.5 mg/mL and LC50 = 0.84 mg/mL (acetonic extract). The addition of polyvinyl polypyrrolidone (PVPP) to the extracts suggested that tannins were responsible for blocking egg eclosion and inducing adult mortality but were not responsible for exsheathment inhibition. These results suggest that the leaves of these Acacia species possess ovicidal and larvicidal activities in vitro against H. contortus, and adulticidal effects against C. elegans

    Blood transcriptome profile induced by an efficacious vaccine formulated with salivary antigens from cattle ticks

    No full text
    Ticks cause massive damage to livestock and vaccines are one sustainable alternative for the acaricide poisons currently heavily used to control infestations. An experimental vaccine adjuvanted with alum and composed by four recombinant salivary antigens mined with reverse vaccinology from a transcriptome of salivary glands from Rhipicephalus microplus ticks was previously shown to present an overall efficacy of 73.2% and cause a significant decrease of tick loads in artificially tick-infested, immunized heifers; this decrease was accompanied by increased levels of antigen-specific IgG1 and IgG2 antibodies, which were boosted during a challenge infestation. In order to gain insights into the systemic effects induced by the vaccine and by the tick challenge we now report the gene expression profile of these hosts' whole-blood leukocytes with RNA-seq followed by functional analyses. These analyses show that vaccination induced unique responses to infestations; genes upregulated in the comparisons were enriched for processes associated with chemotaxis, cell adhesion, T-cell responses and wound repair. Blood transcriptional modules were enriched for activation of dendritic cells, cell cycle, phosphatidylinositol signaling, and platelets. Together, the results indicate that by neutralizing the tick's salivary mediators of parasitism with vaccine-induced antibodies, the bovine host is able to mount normal homeostatic responses that hinder tick attachment and haematophagy and that the tick otherwise suppresses with its saliva

    Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations

    Get PDF
    Abstract Background Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Results Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Conclusion Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens
    corecore