1,084 research outputs found

    Subcomponents of visuospatial working memory : investigating the importance of order in sequential recall and its relationship with mathematics performance.

    Get PDF
    Visuospatial working memory (VSWM) is responsible for storing and manipulating visual and spatial information. Its predictive relationship with mathematics performance in children is well known, especially in younger children. Research has so far not investigated the role of order during recall in sequential tasks, following its subdivision into simultaneous and sequential VSWM. This paper investigates this, in order to determine its predictive power in predicting likely mathematics performance. Children (n=204) performed a battery of WM tasks, including those drawing on both visuospatial and phonological WM, followed by a standardised mathematics test. The data showed significant differences in the number of items recalled in each task, as well as significant correlations between many of the variables. Measuring did not correlate with simultaneous VSWM or block recall, nor did shape correlate significantly with block recall. The results will be further analysed to investigate more intricate relationships present within the data

    The Drosophila melanogaster gut microbiota provisions thiamine to its host

    Get PDF
    The microbiota of Drosophila melanogaster has a substantial impact on host physiology and nutrition. Some effects may involve vitamin provisioning, but the relationships between microbe-derived vitamins, diet, and host health remain to be established systematically. We explored the contribution of microbiota in supplying sufficient dietary thiamine (vitamin B1) to support D. melanogaster at different stages of its life cycle. Using chemically defined diets with different levels of available thiamine, we found that the interaction of thiamine concentration and microbiota did not affect the longevity of adult D. melanogaster Likewise, this interplay did not have an impact on egg production. However, we determined that thiamine availability has a large impact on offspring development, as axenic offspring were unable to develop on a thiamine-free diet. Offspring survived on the diet only when the microbiota was present or added back, demonstrating that the microbiota was able to provide enough thiamine to support host development. Through gnotobiotic studies, we determined that Acetobacter pomorum, a common member of the microbiota, was able to rescue development of larvae raised on the no-thiamine diet. Further, it was the only microbiota member that produced measurable amounts of thiamine when grown on the thiamine-free fly medium. Its close relative Acetobacter pasteurianus also rescued larvae; however, a thiamine auxotrophic mutant strain was unable to support larval growth and development. The results demonstrate that the D. melanogaster microbiota functions to provision thiamine to its host in a low-thiamine environment. Importance: There has been a long-standing assumption that the microbiota of animals provides their hosts with essential B vitamins; however, there is not a wealth of empirical evidence supporting this idea, especially for vitamin B1 (thiamine). To determine whether this assumption is true, we used Drosophila melanogaster and chemically defined diets with different thiamine concentrations as a model. We found that the microbiota does provide thiamine to its host, enough to allow the development of flies on a thiamine-free diet. The power of the Drosophila-microbiota system allowed us to determine that one microbiota member in particular, Acetobacter pomorum, is responsible for the thiamine provisioning. Thereby, our study verifies this long-standing hypothesis. Finally, the methods used in this work are applicable for interrogating the underpinnings of other aspects of the tripartite interaction between diet, host, and microbiota

    Hemodynamics at Maximum Exercise and Exercise Recovery in Freshman Football Recruits at a BCS School

    Get PDF
    To determine if blood pressures assessed during max exercise and exercise recovery differ in Freshman football player recruits classified according to body mass index categories (BMICAT). A group of 107 freshman football recruits (mean age=18.2yrs, mean height=187.2 cm, mean weight = 103.0 kg, mean BMI=27.4 kg/meters squared, mean percent fat= 18.3%.) underwent graded exercise testing on a treadmill. Height and weight were assessed and BMI was calculated as weight (kg) / height (m) squared. All 97 subjects were classified as either “normal weight”(NW) (N=38), “overweight” (OW)(N=41) or “obese” (OB)(N=28) according to the National Institutes of Health guidelines. Body fat percentage (PCTFAT) was assessed using dual x-ray absorptiometry. Resting systolic (SBP) and diastolic (DBP) blood pressures were taken following a 3 minute rest period. Mean arterial pressure (MAP) was estimated as [.3(SBP-DBP)]+DBP. Pressures were also assessed at max exercise and at 1, 3, and 5 minutes post exercise. An analysis of covariance (ANCOVA) with PCTFAT as a covariate was used to determine if differences remained among BMICAT in adjusted values for max exercise and all recovery pressures. After ACOVA adjustment, all maximum and recovery pressures were different among BMICAT with statistical significance found at max exercise and 1 minute post exercise. After adjustment for PCTFAT, differences remain in blood pressures among BMI categories

    Executive Summary - Resigned to the Process: Barriers to Accessing and Maintaining TANF among Low-Income Families with Young Children in Illinois

    Get PDF
    The Temporary Assistance for Needy Families (TANF) program provides cash payments to help extremely low-income families gain stability and achieve self-sufficiency. Emerging research suggests that TANF policies, includingeligibility requirements and sanction procedures, createbarriers to accessing and maintaining TANF benefits that disproportionally impact certain families based on their race.The Social IMPACT Research Center (IMPACT) at HeartlandAlliance was awarded a grant from the Robert Wood JohnsonFoundation (RWJF) to explore barriers to enrolling in TANF among families with young children in Illinois. The project was implemented in partnership with the Chicago Coalition for the Homeless (CCH), and a research advisory board (RAB) of grassroots leaders in Chicago who have direct experience receiving TANF

    Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood

    Get PDF
    notes: PMCID: PMC3446315© 2012 Davies et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors

    A blood gene expression marker of early Alzheimer's disease.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tA marker of Alzheimer's disease (AD) that can accurately diagnose disease at the earliest stage would significantly support efforts to develop treatments for early intervention. We have sought to determine the sensitivity and specificity of peripheral blood gene expression as a diagnostic marker of AD using data generated on HT-12v3 BeadChips. We first developed an AD diagnostic classifier in a training cohort of 78 AD and 78 control blood samples and then tested its performance in a validation group of 26 AD and 26 control and 118 mild cognitive impairment (MCI) subjects who were likely to have an AD-endpoint. A 48 gene classifier achieved an accuracy of 75% in the AD and control validation group. Comparisons were made with a classifier developed using structural MRI measures, where both measures were available in the same individuals. In AD and control subjects, the gene expression classifier achieved an accuracy of 70% compared to 85% using MRI. Bootstrapping validation produced expression and MRI classifiers with mean accuracies of 76% and 82%, respectively, demonstrating better concordance between these two classifiers than achieved in a single validation population. We conclude there is potential for blood expression to be a marker for AD. The classifier also predicts a large number of people with MCI, who are likely to develop AD, are more AD-like than normal with 76% of subjects classified as AD rather than control. Many of these people do not have overt brain atrophy, which is known to emerge around the time of AD diagnosis, suggesting the expression classifier may detect AD earlier in the prodromal phase. However, we accept these results could also represent a marker of diseases sharing common etiology.InnoMed, European Union of the Sixth Framework programAlzheimer’s Research UKJohn and Lucille van Geest FoundationNIHRBiomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation TrustInstitute of Psychiatry Kings College LondonNIA/NIH RC

    Mitochondrial dysfunction and immune activation are detectable in early Alzheimer's disease blood.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tAlzheimer's disease (AD), like other dementias, is characterized by progressive neuronal loss and neuroinflammation in the brain. The peripheral leukocyte response occurring alongside these brain changes has not been extensively studied, but might inform therapeutic approaches and provide relevant disease biomarkers. Using microarrays, we assessed blood gene expression alterations occurring in people with AD and those with mild cognitive changes at increased risk of developing AD. Of the 2,908 differentially expressed probes identified between the three groups (p < 0.01), a quarter were altered in blood from mild cognitive impairment (MCI) and AD subjects, relative to controls, suggesting a peripheral response to pathology may occur very early. There was strong evidence for mitochondrial dysfunction with decreased expression of many of the respiratory complex I-V genes and subunits of the core mitochondrial ribosome complex. This mirrors changes previously observed in AD brain. A number of genes encoding cell adhesion molecules were increased, along with other immune-related genes. These changes are consistent with leukocyte activation and their increased the transition from circulation into the brain. In addition to expression changes, we also found increased numbers of basophils in people with MCI and AD, and increased monocytes in people with an AD diagnosis. Taken together this study provides both an insight into the functional response of circulating leukocytes during neurodegeneration and also identifies potential targets such as the respiratory chain for designing and monitoring future therapeutic interventions using blood.InnoMed, European Union of the Sixth Framework programAlzheimer’s Research TrustJohn and Lucille van Geest FoundationNIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation TrustInstitute of Psychiatry Kings College Londo

    Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tChanges in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11)C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.Alzheimer's Disease Neuroimaging Initiative (ADNI)Canadian Institutes of Health ResearchFoundation for the National Institutes of HealthNational Institutes of HealthInnoMed, European Union of the Sixth Framework programNational Institutes for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley National Health Service Foundation TrustInstitute of Psychiatry, King's College Londo
    corecore