16 research outputs found

    The application of cDNA and tissue microarray methods in the study of human carcinomas

    Get PDF
    Currently, numerous high-throughput technologies are available for the study of human carcinomas. In literature, many variations of these techniques have been described. The common denominator for these methodologies is the high amount of data obtained in a single experiment, in a short time period, and at a fairly low cost. However, these methods have also been described with several problems and limitations. The purpose of this study was to test the applicability of two selected high-throughput methods, cDNA and tissue microarrays (TMA), in cancer research. Two common human malignancies, breast and colorectal cancer, were used as examples. This thesis aims to present some practical considerations that need to be addressed when applying these techniques. cDNA microarrays were applied to screen aberrant gene expression in breast and colon cancers. Immunohistochemistry was used to validate the results and to evaluate the association of selected novel tumour markers with the outcome of the patients. The type of histological material used in immunohistochemistry was evaluated especially considering the applicability of whole tissue sections and different types of TMAs. Special attention was put on the methodological details in the cDNA microarray and TMA experiments. In conclusion, many potential tumour markers were identified in the cDNA microarray analyses. Immunohistochemistry could be applied to validate the observed gene expression changes of selected markers and to associate their expression change with patient outcome. In the current experiments, both TMAs and whole tissue sections could be used for this purpose. This study showed for the first time that securin and p120 catenin protein expression predict breast cancer outcome and the immunopositivity of carbonic anhydrase IX associates with the outcome of rectal cancer. The predictive value of these proteins was statistically evident also in multivariate analyses with up to a 13.1- fold risk for cancer specific death in a specific subgroup of patients.Siirretty Doriast

    Varying outcomes of triple-negative breast cancer in different age groups-prognostic value of clinical features and proliferation

    Get PDF
    PurposeTriple-negative breast cancer (TNBC) is an aggressive disease lacking specific biomarkers to guide treatment decisions. We evaluated the combined prognostic impact of clinical features and novel biomarkers of cell cycle-progression in age-dependent subgroups of TNBC patients.MethodsOne hundred forty seven TNBC patients with complete clinical data and up to 18 year follow-up were collected from Turku University Hospital, Finland. Eight biomarkers for cell division were immunohistochemically detected to evaluate their clinical applicability in relation to patient and tumor characteristics.ResultsAge at diagnosis was the decisive factor predicting disease-specific mortality in TNBC (p = 0.002). The established prognostic features, nodal status and Ki-67, predicted survival only when combined with age. The outcome and prognostic features differed significantly between age groups, middle-aged patients showing the most favorable outcome. Among young patients, only lack of basal differentiation predicted disease outcome, indicating 4.5-fold mortality risk (p = 0.03). Among patients aged > 57, the established prognostic features predicted disease outcome with up to 3.0-fold mortality risk for tumor size ≥ 2 cm (p = 0.001). Concerning cell proliferation, Ki-67 alone was a significant prognosticator among patients aged > 57 years (p = 0.009). Among the studied cell cycle-specific biomarkers, only geminin predicted disease outcome, indicating up to 6.2-fold increased risk of mortality for tumor size p = 0.03).ConclusionTraditional clinical features do not provide optimal prognostic characterization for all TNBC patients. Young age should be considered as an additional adverse prognostic feature in therapeutic considerations. Increased proliferation, as evaluated using Ki-67 or geminin immunohistochemistry, showed potential in detecting survival differences in subgroups of TNBC.</p

    A prognostic model based on cell-cycle control predicts outcome of breast cancer patients

    Get PDF
    Background A prognostic model combining biomarkers of metaphase-anaphase transition of the cell cycle was developed for invasive breast cancer. The prognostic value and clinical applicability of the model was evaluated in comparison with the routine prognosticators of invasive breast carcinoma. Methods The study comprised 1135 breast cancer patients with complete clinical data and up to 22-year follow-up. Regulators of metaphase-anaphase transition were detected immunohistochemically and the biomarkers with the strongest prognostic impacts were combined into a prognostic model. The prognostic value of the model was tested and evaluated in separate patient materials originating from two Finnish breast cancer centers. Results The designed model comprising immunoexpressions of Securin, Separase and Cdk1 identified 8.4-fold increased risk of breast cancer mortality (p 75%) of patients resulting with favorable as opposed to unfavorable outcome of the model. Along with nodal status, the model showed independent prognostic impact for all breast carcinomas and for subgroups of luminal, N+ and N- disease. Conclusions The impact of the proposed prognostic model in predicting breast cancer survival was comparable to nodal status. However, the model provided additional information in N- breast carcinoma in identifying patients with aggressive course of disease, potentially in need of adjuvant treatments. Concerning N+, in turn, the model could provide evidence for withholding chemotherapy from patients with favorable outcome.</div

    Proliferation-associated miRNAs-494, -205, -21 and -126 detected by in situ hybridization: expression and prognostic potential in breast carcinoma patients

    Get PDF
    PurposeTo visualize by in situ hybridization (ISH) the levels of a set of proliferation-associated miRNAs and to evaluate their impact and clinical applicability in prognostication of invasive breast carcinoma.MethodsTissue specimen from breast carcinoma patients were investigated for miRNAs-494, -205, -21 and -126. Prognostic associations for levels of miRNAs were analyzed based on complete clinical data and up to 22.5-year follow-up of the patient material (n = 285). For detection of the miRNAs, an automated sensitive protocol applying in situ hybridization was developed.ResultsMiRNA-494 indicated prognostic value for patients with invasive breast carcinoma. Among node-negative disease reduced level of miRNA-494 predicted 8.5-fold risk of breast cancer death (p = 0.04). Altered levels and expression patterns of the studied miRNAs were observed in breast carcinomas as compared to benign breast tissue.ConclusionsThe present paper reports for the first time on the prognostic value of miRNA-494 in invasive breast cancer. Particularly, detection of miRNA-494 could benefit patients with node-negative breast cancer in identifying subgroups with aggressive disease. Based on our experience, the developed automatic ISH method to visualize altered levels of miRNAs-494, -205, -21 and -126 could be applied to routine pathology diagnostics providing that conditions of tissue treatment, especially fixation delays, are managed.</div

    Tumor-infiltrating lymphocytes and CD8+ T cells predict survival of triple-negative breast cancer

    Get PDF
    PurposeTumor inflammatory response was evaluated as a prognostic feature in triple-negative breast cancer (TNBC) and compared with the clinical prognosticators of breast cancer and selected biomarkers of cancer cell proliferation.MethodsTNBC patients (n = 179) with complete clinical data and up to 18-year follow-up were obtained from Auria biobank, Turku University Hospital, Turku, Finland. Tumor-infiltrating lymphocytes (TILs) and several subtypes of inflammatory cells detected with immunohistochemistry were evaluated in different tumor compartments in full tissue sections and tissue microarrays.ResultsDeficiency of stromal TILs and low number of CD8+ T cells independently predicted mortality in TNBC (HR 2.4, p 0.02 and HR 2.1, p 0.02, respectively). Each 10% decrease in stromal TILs resulted in 20% increased risk of mortality. An average of 13.2-year survival difference was observed between the majority (> 75%) of patients with low (DiscussionTILs and CD8+ T cells provide additional prognostic value to the established clinical prognostic markers in TNBC. However, possible clinical applications would still benefit from systematic guidelines for evaluating tumor inflammatory response. Increasing understanding on the interactions between the regulation of cancer cell proliferation and inflammatory response may in future advance treatment of TNBC.</p

    PTTG1-interacting protein (PTTG1IP/PBF) predicts breast cancer survival

    No full text
    Background: PTTG1-interacting protein (PTTG1IP) is an oncogenic protein, which participates in metaphase-anaphase transition of the cell cycle through activation of securin (PTTG1). PTTG1IP promotes the shift of securin from the cell cytoplasm to the nucleus, allowing the interaction between separase and securin. PTTG1IP overexpression has been previously observed in malignant disease, e.g. in breast carcinoma. However, the prognostic value of PTTG1IP in breast carcinoma patients has not previously been revealed. Methods: A total of 497 breast carcinoma patients with up to 22-year follow-up were analysed for PTTG1IP and securin immunoexpression. The results were evaluated for correlations with the clinical prognosticators and patient survival. Results: In our material, negative PTTG1IP immunoexpression predicted a 1.5-fold risk of breast cancer death (p = 0.02). However, adding securin immunoexpression to the analysis indicated an even stronger and independent prognostic power in the patient material (HR = 2.5, p < 0.0001). The subcellular location of securin was found with potential prognostic value also among the triple-negative breast carcinomas (n = 96, p = 0.052). Conclusions: PTTG1IP-negativity alone and in combination with high securin immunoexpression indicates a high risk of breast cancer death, resulting in up to 14-year survival difference in our material.peerReviewe

    FHOD1, a Formin Upregulated in Epithelial-Mesenchymal Transition, Participates in Cancer Cell Migration and Invasion

    No full text
    Cancer cells can obtain their ability to invade and metastasise by undergoing epithelial-to-mesenchymal transition (EMT). Exploiting this mechanism of cellular plasticity, malignant cells can remodel their actin cytoskeleton and down-regulate proteins needed for cell-cell contacts. The mechanisms of cytoskeletal reorganisation resulting in mesenchymal morphology and increased invasive potential are poorly understood. Actin nucleating formins have been implicated as key players in EMT. Here, we analysed which formins are altered in squamous cell carcinoma related EMT. FHOD1, a poorly studied formin, appeared to be markedly upregulated upon EMT. In human tissues FHOD1 was primarily expressed in mesenchymal cells, with little expression in epithelia. However, specimens from oral squamous cell cancers demonstrated consistent FHOD1 upregulation in mesenchymally transformed cells at the invasive edge. This upregulation was confirmed in an oral squamous carcinoma model, where FHOD1 expression was markedly increased upon EMT in a PI3K signalling dependent manner. In the EMT cells FHOD1 contributed to the spindle-shaped morphology and mesenchymal F-actin organization. Furthermore, functional assays demonstrated that FHOD1 contributes to cell migration and invasion. Finally, FHOD1 depletion reduced the ability of EMT cancer cells to form invadopodia and to degrade extracellular matrix. Our results indicate that FHOD1 participates in cytoskeletal changes in EMT. In addition, we show that FHOD1 upregulation occurs during cancer cell EMT in vivo, which indicates that FHOD1 may contribute to tumour progression

    FHOD1, a Formin Upregulated in Epithelial-Mesenchymal Transition, Participates in Cancer Cell Migration and Invasion

    Get PDF
    Cancer cells can obtain their ability to invade and metastasise by undergoing epithelial-to-mesenchymal transition (EMT). Exploiting this mechanism of cellular plasticity, malignant cells can remodel their actin cytoskeleton and down-regulate proteins needed for cell-cell contacts. The mechanisms of cytoskeletal reorganisation resulting in mesenchymal morphology and increased invasive potential are poorly understood. Actin nucleating formins have been implicated as key players in EMT. Here, we analysed which formins are altered in squamous cell carcinoma related EMT. FHOD1, a poorly studied formin, appeared to be markedly upregulated upon EMT. In human tissues FHOD1 was primarily expressed in mesenchymal cells, with little expression in epithelia. However, specimens from oral squamous cell cancers demonstrated consistent FHOD1 upregulation in mesenchymally transformed cells at the invasive edge. This upregulation was confirmed in an oral squamous carcinoma model, where FHOD1 expression was markedly increased upon EMT in a PI3K signalling dependent manner. In the EMT cells FHOD1 contributed to the spindle-shaped morphology and mesenchymal F-actin organization. Furthermore, functional assays demonstrated that FHOD1 contributes to cell migration and invasion. Finally, FHOD1 depletion reduced the ability of EMT cancer cells to form invadopodia and to degrade extracellular matrix. Our results indicate that FHOD1 participates in cytoskeletal changes in EMT. In addition, we show that FHOD1 upregulation occurs during cancer cell EMT in vivo, which indicates that FHOD1 may contribute to tumour progression

    Group X Phospholipase A2 Stimulates the Proliferation of Colon Cancer Cells by Producing Various Lipid Mediators

    No full text
    Among mammalian secreted phospholipases A2 (sPLA2s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA2 [mouse (m)GX] is one of the most highly expressed PLA2 in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA2s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA2 inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA2α and M-type sPLA2 receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA2 mitogenic effects. Together, our results indicate that group X sPLA2 may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression
    corecore