19 research outputs found

    Enhancing authenticity, diagnosticity and equivalence (AD-Equiv) in multicentre OSCE exams in health professionals education: protocol for a complex intervention study

    Get PDF
    Introduction: Objective structured clinical exams (OSCEs) are a cornerstone of assessing the competence of trainee healthcare professionals, but have been criticised for (1) lacking authenticity, (2) variability in examiners’ judgements which can challenge assessment equivalence and (3) for limited diagnosticity of trainees’ focal strengths and weaknesses. In response, this study aims to investigate whether (1) sharing integrated-task OSCE stations across institutions can increase perceived authenticity, while (2) enhancing assessment equivalence by enabling comparison of the standard of examiners’ judgements between institutions using a novel methodology (video-based score comparison and adjustment (VESCA)) and (3) exploring the potential to develop more diagnostic signals from data on students’ performances. Methods and analysis: The study will use a complex intervention design, developing, implementing and sharing an integrated-task (research) OSCE across four UK medical schools. It will use VESCA to compare examiner scoring differences between groups of examiners and different sites, while studying how, why and for whom the shared OSCE and VESCA operate across participating schools. Quantitative analysis will use Many Facet Rasch Modelling to compare the influence of different examiners groups and sites on students’ scores, while the operation of the two interventions (shared integrated task OSCEs; VESCA) will be studied through the theory-driven method of Realist evaluation. Further exploratory analyses will examine diagnostic performance signals within data. Ethics and dissemination: The study will be extra to usual course requirements and all participation will be voluntary. We will uphold principles of informed consent, the right to withdraw, confidentiality with pseudonymity and strict data security. The study has received ethical approval from Keele University Research Ethics Committee. Findings will be academically published and will contribute to good practice guidance on (1) the use of VESCA and (2) sharing and use of integrated-task OSCE stations

    "Who Has Plots?"

    No full text
    Software is an integral element of the work of science yet it is not commonly an object of inquiry in studies of scientific infrastructures. This paper presents findings from an ethnographic study of a cosmology group's collaborative scientific software production. We demonstrate how these cosmologists use plots to simultaneously test their software and analyze data while interrogating multiple layers of infrastructural components. We broaden perspectives on scientific software development using a sociotechnical, software studies lens to examine this work of scientific discovery as a creative and embodied, yet exacting and methodical, activity that requires a 'human in the loop'. We offer a new reading of scientific software practices to convey how creating scientific software is often really the act of doing science itself--an intervention we believe is necessary to more successfully support scientific software sharing and infrastructure production

    De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects

    No full text
    International audienceCadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects)

    De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia

    No full text

    Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11

    No full text
    Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants.We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality.Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients’ variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants.GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues

    Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain

    No full text
    Purpose We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1 beta subunit of the cyclic AMP-dependent protein kinase A (PKA). Methods Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. Results Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. Conclusion Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder
    corecore